
JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 8

A Conceptual Framework for Enhancing Software System Dependability

Dr. Silvia G. Conti
Department Of Computer Engineering, Politecnico Di Torino, Italy

 Dr. Andrew T. Nguyen

Department Of Software Engineering, University Of Melbourne, Australia

V0LUME01 ISSUE01 (2022)

Published Date: 21 December 2022 // Page no.: - 8-15

ABSTRACT

Software reliability is a critical attribute of software quality, fundamentally influencing user satisfaction, operational
efficiency, and overall system integrity. In an era of increasingly complex and interconnected software systems,
particularly within critical infrastructures and Internet of Things (IoT) environments [1], ensuring and improving
software dependability has become paramount. This article proposes a conceptual framework designed to systematically
enhance software system reliability throughout the software development lifecycle. Drawing upon established software
engineering principles, quality models, and contemporary approaches to defect detection and reliability prediction, the
proposed model integrates proactive measures, continuous monitoring, and feedback mechanisms. We synthesize
insights from various reliability assessment models, quality standards, and empirical studies on factors affecting software
reliability. The framework emphasizes a holistic perspective, considering not only technical aspects but also
environmental and organizational influences on reliability. This conceptual model aims to provide a structured approach
for practitioners and researchers to identify, mitigate, and manage reliability risks, ultimately leading to more robust and
trustworthy software systems.

Keywords: - Software dependability, conceptual framework, fault tolerance, system reliability, software quality, error
handling, system resilience, dependable computing, software engineering, risk mitigation.

1. INTRODUCTION

In the contemporary digital landscape, software systems

underpin nearly every facet of modern society, from

critical infrastructure and financial transactions to

healthcare and personal communication. The pervasive

nature of software necessitates a relentless focus on its

quality attributes, among which reliability stands out as a

paramount concern [44, 45]. Software reliability is defined

by the IEEE Standard Glossary of Software Engineering

Terminology [20, 47] as the probability that software will

operate without failure for a specified period of time in a

specified environment. It is a dynamic property, evolving

throughout the software lifecycle, and directly impacts the

trustworthiness and utility of a system [13]. Failures in

software systems can lead to significant financial losses,

reputational damage, safety hazards, and even loss of life,

as highlighted by reports on the cost of poor software

quality [48].

The complexity of modern software systems, characterized

by distributed architectures, concurrent processes, and

intricate interactions with hardware and other software

components, exacerbates the challenge of achieving high

reliability. This is particularly true for emerging paradigms

like the Internet of Things (IoT), where diverse devices and

networks must operate seamlessly and reliably [1].

Furthermore, the rapid pace of software development,

coupled with pressure to deliver new functionalities, often

leads to overlooked quality issues, contributing to an

increase in software defects and vulnerabilities [8, 9]. The

historical evolution of software quality models, from early

frameworks like McCall's factors [34] to the widely adopted

ISO/IEC 9126 [26] and its successor, ISO/IEC 25010

(SQuaRE) [25, 19], underscores the continuous effort to

define, measure, and improve software quality. These

models provide taxonomies of quality characteristics, with

reliability consistently being a primary focus.

Traditional approaches to ensuring reliability have often

centered on testing and debugging, which are crucial but

inherently reactive [40]. While various software reliability

growth models (SRGMs) have been proposed to predict

reliability based on observed failure data during testing [12,

32, 39], their predictive power can be limited by the

availability and quality of such data, especially in early

development phases [46, 51]. More comprehensive

strategies are needed that integrate reliability

considerations across the entire software development

lifecycle, from requirements engineering and design to

implementation, testing, and deployment.

This article proposes a conceptual model for improving

software system reliability, addressing the multifaceted

nature of this quality attribute. The model aims to provide a

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 9

structured approach for practitioners to integrate

proactive reliability-enhancing activities into their

development processes. By synthesizing insights from

established quality standards, reliability models, and

empirical studies, our framework emphasizes a holistic

perspective that considers technical, environmental, and

organizational factors [36, 42, 53, 54]. The ultimate goal is

to foster the development of more dependable software

systems that meet the stringent demands of contemporary

applications and user expectations.

2. METHODS

Developing a comprehensive conceptual model for

improving software system reliability necessitates a

systematic approach that integrates theoretical

foundations, established industry practices, and empirical

insights from existing literature. Our methodology for

constructing this framework involved a multi-stage

process of systematic literature review, synthesis of key

concepts, and architectural design of the model's

components. This approach is informed by best practices

in systematic literature reviews within software

engineering [11, 52].

2.1 Foundational Concepts and Definitions

To establish a clear understanding of software reliability,

we first revisited fundamental definitions and quality

models. The IEEE defines software reliability as the

probability of failure-free operation for a specified time in

a specified environment [20, 47]. This definition

underscores the probabilistic nature of reliability and its

dependence on operational context. Key software quality

models, such as McCall's Factors [34], Boehm's Model [10],

ISO/IEC 9126 [26], and ISO/IEC 25010 (SQuaRE) [25],

were analyzed to identify how reliability is characterized

and integrated within broader quality frameworks [5, 19,

37, 41]. These models uniformly recognize reliability as a

critical external quality attribute, often encompassing sub-

characteristics like maturity, fault tolerance, and

recoverability [23, 25].

2.2 Identification of Key Factors Affecting Reliability

A crucial step in model development was to identify the

multifaceted factors that influence software reliability.

This involved reviewing empirical studies and surveys that

explore these influences. Factors identified include:

• Software Product Attributes: These relate to the

inherent characteristics of the software itself, such

as complexity, size, architecture [18], and the

number and type of defects [8, 53]. Architectural

design choices, for instance, significantly impact a

system's fault tolerance and recovery mechanisms

[16].

• Development Process Characteristics: The rigor

and quality of the development process play a

significant role. This includes aspects like coding

standards [35], testing methodologies [7, 27, 30,

40], verification and validation activities [7], and

quality assurance processes [6, 21].

• Operational Environment: External factors, such

as hardware reliability [50], operating system

stability, network conditions, and even human

interaction patterns, can impact perceived software

reliability [36, 42, 54].

• Organizational Factors: Management practices,

team expertise, communication, and resource

allocation also indirectly influence reliability by

affecting the development process and product

quality.

Understanding these factors is essential for designing a

model that addresses reliability comprehensively rather

than focusing on isolated aspects.

2.3 Review of Existing Reliability Models and

Improvement Approaches

We conducted an extensive review of existing software

reliability models and improvement approaches. This

included:

• Software Reliability Growth Models (SRGMs):

These models, such as the Goel-Okumoto model

[39], use historical failure data during testing to

predict future reliability [12, 28, 33]. While useful,

their limitations in early lifecycle phases and

sensitivity to data quality were noted [46]. Recent

advancements address dependent failures and

uncertain environments [32].

• Architecture-Based Reliability Analysis:

Approaches that analyze reliability at the

architectural level to predict system dependability

early in the design phase [18].

• Quality Models and Standards: Examination of

ISO 9001 [24], IEEE standards for software quality

assurance [21], and metrics methodology [22].

These standards provide a framework for quality

management and process improvement that can

directly impact reliability.

• Defect Detection and Prevention: Review of

methods for detecting vulnerabilities [9], automatic

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 10

test case generation [27], and the broader role of

testing [14, 30].

• Computational Intelligence Approaches:

Exploration of how machine learning and other AI

techniques can be applied for software quality

prediction, including reliability [2, 3].

This review provided a rich repository of techniques and

perspectives from which to derive components for our

conceptual model.

2.4 Conceptual Model Design

Based on the synthesis of the aforementioned concepts and

reviews, we proceeded to design the conceptual model.

The design process involved:

1. Identifying Core Components: Determining the

main building blocks necessary for a holistic

approach to reliability improvement.

2. Defining Relationships: Establishing how these

components interact and influence each other

across the software development lifecycle.

3. Proposing Key Activities: Outlining the practical

actions and considerations within each

component.

4. Emphasizing Lifecycle Integration: Ensuring

that reliability is not treated as an afterthought but

as an integral part of every phase.

The resulting model is intended to be a high-level

framework that can be adapted to various software

development contexts, from embedded systems in

automated mining [17] to critical infrastructure software

[29]. It moves beyond merely measuring reliability to

actively guiding its enhancement.

3. Results (Conceptual Model Components)

The synthesis of literature and analysis of software

reliability factors culminated in the proposed conceptual

framework for enhancing software system dependability.

This section outlines the key components of this model,

illustrating how they interact to provide a systematic

approach to reliability improvement throughout the

software development lifecycle. Since this is a conceptual

model, the "results" presented here are the model's

architecture and its constituent elements, rather than

empirical data from an experiment.

3.1 Integrated Quality Planning and Requirements

Engineering

The foundation of software reliability is laid during the

initial phases of development. The model emphasizes:

• Reliability-Focused Requirements Elicitation:

Explicitly defining non-functional requirements

related to reliability, including mean time between

failures (MTBF), availability, and fault tolerance

[10, 25]. This ensures that reliability is a primary

consideration from the outset.

• Early Risk Identification: Proactively identifying

potential reliability risks through architectural

analysis [18] and threat modeling. This includes

considering interactions with hardware [50] and

external environmental factors [42].

• Integration with Quality Standards: Aligning

initial planning with established software quality

standards like ISO 9001 [24], IEEE 730-2014 for

Software Quality Assurance Processes [21], and

ISO/IEC 25010 [25]. These standards provide a

robust framework for quality management [6].

3.2 Robust Design and Architecture

Reliability is significantly influenced by architectural

choices. The model proposes:

• Resilient Design Patterns: Employing

architectural patterns that promote fault tolerance,

such as redundancy, error detection, and recovery

mechanisms [16]. This includes designing for

graceful degradation and self-healing capabilities.

• Modularity and Decoupling: Promoting modular

design to limit the propagation of errors and

simplify maintenance, which indirectly contributes

to reliability [35].

• Security by Design: Incorporating security

considerations from the architectural phase to

reduce vulnerabilities, as security flaws can often

manifest as reliability issues [4, 9].

3.3 Proactive Implementation and Code Quality

Management

The implementation phase is where design decisions

translate into executable code, and quality directly impacts

reliability. This component includes:

• Adherence to Coding Standards: Enforcing strict

coding standards and best practices to minimize the

introduction of defects [35].

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 11

• Static Code Analysis: Utilizing automated tools

for static analysis to identify potential bugs,

vulnerabilities, and code smells early in the

development cycle, before execution [9].

• Peer Reviews and Inspections: Conducting

thorough code reviews to detect errors that might

be missed by automated tools.

• Defect Classification and Tracking:

Systematically classifying and tracking software

defects to understand their root causes and

prevent recurrence [8].

3.4 Comprehensive Verification and Validation (V&V)

Testing and V&V activities are crucial for uncovering

defects and assessing reliability. The model emphasizes:

• Multi-Stage Testing Strategy: Implementing a

comprehensive testing strategy that includes unit

testing, integration testing, system testing, and

acceptance testing [7, 40].

• Reliability Testing: Specifically designing tests to

measure reliability metrics, such as failure rates

and mean time to failure (MTTF) [33]. This

involves subjecting the software to stress, load,

and long-duration execution under realistic

operational profiles.

• Automated Test Case Generation: Leveraging

techniques for automatic test case generation to

improve test coverage and efficiency in error

detection [27, 30].

• White-Box Testing: Employing white-box testing

techniques to scrutinize internal code paths and

logic, which can reveal deeper reliability issues

[14].

• Software Reliability Growth Modeling (SRGM):

Applying SRGMs during the testing phase to track

defect discovery and predict when a target

reliability level might be achieved [12, 33, 39].

This provides a quantitative measure of progress

and helps in making release decisions.

3.5 Continuous Monitoring and Feedback Loop

Reliability is not a static state but requires continuous

attention throughout the operational life of the software.

The model proposes:

• Real-time Performance Monitoring:

Implementing tools to monitor system

performance, errors, and failures in real-time in the

production environment.

• User Feedback Integration: Establishing channels

for collecting and analyzing user feedback on

perceived reliability and encountered issues.

• Incident Management and Post-Mortem

Analysis: Systematically addressing incidents,

conducting root cause analysis for failures, and

feeding lessons learned back into the development

process to prevent future occurrences.

• Predictive Maintenance/Reliability: Utilizing

computational intelligence and machine learning

techniques for software quality prediction [2, 3],

enabling proactive identification of potential

reliability degradation before failures occur [49].

This includes analyzing environmental factors that

can influence reliability [36, 42, 54].

3.6 Iterative Improvement and Knowledge Management

The model inherently supports an iterative improvement

cycle driven by data and lessons learned.

• Metrics-Driven Improvement: Using software

quality metrics, particularly those related to

reliability [22, 43, 51], to identify areas for

improvement and track the effectiveness of

interventions.

• Knowledge Base Development: Creating a

centralized knowledge base of common failure

modes, solutions, and best practices to facilitate

organizational learning and prevent recurring

reliability issues.

• Regular Audits and Reviews: Conducting periodic

audits of development processes and system

performance against established reliability goals

and standards.

These components collectively form a holistic framework,

recognizing that improving software reliability is an ongoing

process that permeates all stages of the software lifecycle

and requires collaboration across all stakeholders.

4. DISCUSSION

The proposed conceptual framework for enhancing

software system dependability offers a structured and

comprehensive approach to addressing one of the most

critical aspects of software quality. By integrating elements

from various software engineering disciplines and drawing

upon an extensive body of research, this model extends

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 12

beyond traditional, often reactive, reliability testing to

encompass proactive measures throughout the entire

software development lifecycle. This holistic view aligns

with the evolving understanding of software quality, where

attributes like reliability, usability, and maintainability are

increasingly interdependent [41].

A key strength of the model is its emphasis on early

intervention. By advocating for reliability considerations

during requirements engineering and architectural design,

the framework aims to prevent defects that are typically

more costly to fix in later stages. This resonates with the

principles of "building quality in" rather than "testing

quality in." The inclusion of explicit reliability

requirements and architectural patterns for resilience

directly tackles the inherent challenges of complex systems

and systems-of-systems [16], moving beyond simple defect

counting to considering the system's ability to withstand

and recover from faults.

The detailed focus on proactive implementation and code

quality management underlines the fact that reliability is

not solely a design artifact but is deeply embedded in the

code itself. Adherence to coding standards, rigorous static

analysis, and peer reviews are fundamental practices that

minimize latent defects, which, if left unaddressed, can lead

to runtime failures [35]. The systematic classification of

defects [8] is crucial for learning from past mistakes and

continuously refining development processes.

The comprehensive verification and validation component

stresses the importance of a multi-faceted testing strategy,

including dedicated reliability testing. While software

reliability growth models (SRGMs) have historical

significance [12, 33], the model acknowledges their

limitations and advocates for their judicious application

alongside other V&V activities. The integration of advanced

techniques like automated test case generation [27, 30]

and white-box testing [14] further enhances the model's

practical utility, ensuring a more thorough exploration of

the software's behavior under various conditions.

Perhaps one of the most forward-looking aspects of the

framework is its emphasis on continuous monitoring and a

feedback loop. In today's dynamic operational

environments, reliability cannot be guaranteed solely at

release time. Real-time performance monitoring, coupled

with robust incident management and root cause analysis,

enables organizations to swiftly respond to failures and

leverage operational data for continuous improvement.

The integration of computational intelligence for

predictive reliability [2, 3, 49] represents a significant shift

from reactive problem-solving to proactive risk mitigation,

allowing for the anticipation and prevention of failures

before they impact users. This addresses the influence of

dynamic environmental factors on reliability [36, 42, 54].

The iterative nature of the model, driven by metrics and

knowledge management, creates a virtuous cycle of

improvement. By systematically tracking reliability metrics

[22, 43, 51] and formalizing lessons learned, organizations

can build institutional knowledge that continually enhances

their ability to produce dependable software. This approach

supports a culture of quality that is essential for long-term

software success.

Limitations of the Conceptual Model:

As a conceptual framework, this model does not prescribe

specific tools, techniques, or quantitative measures for

every component. Its implementation would require

tailoring to specific organizational contexts, project sizes,

and domain requirements. The effectiveness of the model

relies heavily on organizational commitment, resource

allocation, and a mature software engineering culture.

Furthermore, the interplay between software reliability and

other non-functional requirements (e.g., performance,

security, usability) is complex, and while the model touches

upon some of these interactions (e.g., security contributing

to reliability [9]), a deeper exploration of these

interdependencies could further refine the framework.

Future Work:

Future research could focus on validating this conceptual

model through empirical studies in diverse industrial

settings. This would involve:

• Developing specific metrics and benchmarks for

each component of the framework.

• Conducting case studies on projects that adopt

elements of this framework to evaluate its impact

on actual software reliability.

• Exploring the practical challenges and success

factors in implementing such a comprehensive

model within different organizational structures

and development methodologies (e.g., Agile,

DevOps).

• Investigating the specific contributions of various

computational intelligence techniques in predicting

and enhancing reliability within the proposed

framework.

• Further dissecting the influence of human factors

and organizational culture on the successful

adoption and execution of reliability improvement

processes.

5. CONCLUSION

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 13

Software reliability remains a cornerstone of software

quality, critical for the success and trustworthiness of

modern systems. This article has proposed a conceptual

framework designed to systematically enhance software

system dependability by integrating proactive measures

across the entire software development lifecycle. The

model moves beyond reactive testing to advocate for early

reliability planning, robust architectural design, diligent

code quality management, comprehensive verification and

validation, continuous operational monitoring, and an

iterative improvement feedback loop.

By synthesizing insights from decades of software

engineering research, quality standards, and

contemporary advancements in defect detection and

reliability prediction, this framework offers a holistic

perspective. It underscores that achieving high software

reliability is a continuous journey that requires a concerted

effort from all stakeholders, integrating technical rigor

with robust process management and a culture of quality.

While further empirical validation is warranted, this

conceptual model provides a valuable roadmap for

practitioners and researchers striving to build and

maintain more dependable software systems in an

increasingly complex technological landscape.

REFERENCES

[1] Abdallah, M., Jaber, T., Alabwaini, N., & Abd Alnabi, A.

(2019). A proposed quality model for the Internet of Things

systems. In 2019 IEEE Jordan International Joint Conference

on Electrical Engineering and Information Technology, 23-

27.

[2] Alaswad, F., & Poovammal, E. (2022). Software quality

prediction using machine learning. Materials Today:

Proceedings, 62, 4714-4720.

https://doi.org/10.1016/j.matpr.2022.03.165.

[3] Albeanu, G., Madsen, H., Popențiu-Vlădicescu, F. (2020).

Computational Intelligence Approaches for Software

Quality Improvement. Reliability and Statistical Computing:

Modeling, Methods and Applications, 305-317.

[4] Alguliyev, R. M. & Mahmudov R. Sh. (2019). Sensitive

personal data in the national mentality context and its

security provision. Problems of Information Society, №2,

117–128.

[5] Al-Qutaish, R. E. (2010). Quality models in software

engineering literature: an analytical and comparative

study. Journal of American Science, 6(3), 166-175.

[6] Bayramova, T.A. (2020). Analysis of software

engineering standards. Problems of Information Society,

11(1), 83–95.

[7] Bayramova, T.A. & Abbasova N.P. (2016). Verification

and validation of software / «Questions of application of

mathematics and new information technologies» III

republican scientific conference, Sumgayit, December 15, 197-

198.

[8] Bayramova, T.A. (2022). Classification of software

defects. Proceedings of the III international scientific

conference on information systems and technologies:

achievements and perspectives, Sumgayit, 256-258.

[9] Bayramova, T.A. (2022). Analysis of Modern Methods for

Detecting Vulnerabilities in Software for Industrial

Information Systems // Cybersecurity for Critical

Infrastructure Protection via Reflection of Industrial Control

Systems, NATO Science for Peace and Security Series D:

Information and Communication Security. - Amsterdam, 160-

162.

[10] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M.,

McLeod, G., Merritt, M. (1978). Characteristics of Software

Quality. North Holland Publishing, Amsterdam, The

Netherlands, 45-68, 169.

[11] Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M.,

Khalil, M. (2007). Lessons from applying the systematic

literature review process within the software engineering

domain. Journal of systems and software, 80(4), 571-583.

https://doi.org/10.1016/j.jss.2006.07.009.

[12] Cristescu, M. P., Stoica, E. A., Ciovică, L. V. (2015). The

comparison of software reliability assessment models.

Procedia Economics and Finance, 27, 669-675.

https://doi.org/10.1016/S2212-5671(15)01047-3.

[13] Cusick, J. J. (2019). The first 50 years of software

reliability engineering: A history of SRE with first person

accounts. arXiv preprint arXiv:1902.06140.

[14] Daniels, D., Myers, R., & Hilton, A. (2003). White box

software development. In Current Issues in Safety-Critical

Systems: Proceedings of the Eleventh Safety-critical Systems

Symposium, Bristol, UK, 4–6 February 2003, 119-136.

London: Springer London. https://doi.org/10.1007/978-1-

4471-0653-1_7.

[15] Febrero, F., Calero, C., & Moraga, M. Á. (2016). Software

reliability modeling based on ISO/IEC SQuaRE. Information

and Software Technology, 70, 18-29.

https://doi.org/10.1016/j.infsof.2015.09.006.

[16] Ferreira, F. H. C., Nakagawa, E. Y., dos Santos, R. P.

(2023). Towards an understanding of reliability of software-

intensive systems-of-systems. Information and Software

Technology, 158, 107186.

https://doi.org/10.1016/j.matpr.2022.03.165
https://doi.org/10.1016/j.jss.2006.07.009
https://doi.org/10.1016/S2212-5671(15)01047-3
https://doi.org/10.1007/978-1-4471-0653-1_7
https://doi.org/10.1007/978-1-4471-0653-1_7
https://doi.org/10.1016/j.infsof.2015.09.006

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 14

[17] Ghodrati, B., Hadi Hoseinie, S., Garmabaki, A. H. S.

(2015). Reliability considerations in automated mining

systems. International journal of mining, reclamation and

environment, 29(5), 404-418.

[18] Gokhale, S. S. (2007). Architecture-based software

reliability analysis: Overview and limitations. IEEE

Transactions on dependable and secure computing, 4(1), 32-

40.

[19] Gordieiev, O., Kharchenko, V., Fominykh, N., Sklyar, V.

(2014). Evolution of software quality models in context of

the standard ISO 25010. In Proceedings of the Ninth

International Conference on Dependability and Complex

Systems DepCoS-RELCOMEX. June 30–July 4, 2014, Brunów,

Poland, pp. 223-232. Springer International Publishing.

https://doi.org/10.1007/978-3-319-07013-1_21

[20] IEEE 610.12-1990 Standard Glossary of Software

Engineering Terminology.

https://ieeexplore.ieee.org/document/159342

[21] IEEE 730-2014 Standard for Software Quality

Assurance Processes.

https://ieeexplore.ieee.org/document/6835311

[22] IEEE 1061-1992 Standard for a Software Quality

Metrics Methodology.

https://ieeexplore.ieee.org/document/237006.

[23] In use qualities from ISO/IEC 25010. 3-4.

https://www.irit.fr/recherches/ICS/projects/twintide/u

pload/435.pdf

[24] ISO 9001 and related standards.

https://www.iso.org/iso-9001-quality-management.html

[25] ISO/IEC 25010:2011 Systems and software

engineering — Systems and software Quality

Requirements and Evaluation (SQuaRE) — System and

software quality models.

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-

1:v1:en

[26] ISO/IEC 9126-1:2001 Software engineering —

Product quality — Part 1: Quality model.

https://www.standards.ru/document/3617603.aspx

[27] Jalilian, S., & Mahmudova, S. J. (2022). Automatic

generation of test cases for error detection using the

extended Imperialist Competitive Algorithm. Problems of

Information Society, 46-54.

[28] Jatain, A., & Mehta, Y. (2014). Metrics and models for

software reliability: A systematic review. In 2014

International Conference on Issues and Challenges in

Intelligent Computing Techniques (ICICT), 210-214. IEEE.

doi: 10.1109/ICICICT.2014.6781281.

[29] Jharko, E. (2021). Ensuring the software quality for

critical infrastructure objects. IFAC-PapersOnLine, 54(13),

499-504. https://doi.org/10.1016/j.ifacol.2021.10.498.

[30] Kazimov, T. H., Bayramova, T. A., & Malikova, N. J.

(2021). Research of intelligent methods of software testing.

System Research & Information Technologies, 4, 42-52.

[31] Kumar, A., & Gupta, D. (2017). Paradigm shift from

conventional software quality models to web based quality

models. International Journal of Hybrid Intelligent Systems,

14(3), 167-179.

[32] Lee, D. H., Chang, I. H., & Pham, H. (2022). Software

reliability growth model with dependent failures and

uncertain operating environments. Applied Sciences, 12(23),

12383.

[33] Maevsky, D., Kharchenko, V., Kolisnyk, M., & Maevskaya,

E. (2017, September). Software reliability models and

assessment techniques review: Classification issues. In 2017

9th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems: Technology

and Applications, 2, 894-899. doi:

10.1109/IDAACS.2017.8095216.

[34] McCall, J., Paul, K., Richards and F. Walters (1977).

Factors in software quality: concept and definitions of

software quality / Final Technical Report General Electric

Company, 1, 25-31, 168.

[35] McConnell, S. (2004). Code complete. Pearson

Education. 952.

[36] Mengmeng Z., Xuemei Z., Hoang P. (2015). A

comparison analysis of environmental factors affecting

software reliability, Journal of Systems and Software, 109,

150-160, https://doi.org/10.1016/j.jss.2015.04.083.

[37] Miguel, J. P., Mauricio, D., Rodríguez, G. (2014). A review

of software quality models for the evaluation of software

products. arXiv preprint arXiv:1412.2977.

[38] Musa, J. D., & Everett, W. W. (1990). Software-reliability

engineering: Technology for the 1990s. IEEE Software, 7(6),

36-43.

[39] Nagar, P., & Thankachan, B. (2012). Application of Goel-

Okumoto model in software reliability measurement. Int. J.

Comp. Appl. Special Issue ICNICT, 5, 1-3.

[40] Nayyar, A. (2019). Instant approach to software testing:

Principles, applications, techniques, and practices. BPB

Publications, India, 2019, 99-101, 368.

https://doi.org/10.1007/978-3-319-07013-1_21
https://ieeexplore.ieee.org/document/159342
https://ieeexplore.ieee.org/document/6835311
https://ieeexplore.ieee.org/document/237006
https://www.irit.fr/recherches/ICS/projects/twintide/upload/435.pdf
https://www.irit.fr/recherches/ICS/projects/twintide/upload/435.pdf
https://www.iso.org/iso-9001-quality-management.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.standards.ru/document/3617603.aspx
https://doi.org/10.1016/j.ifacol.2021.10.498
https://doi.org/10.1016/j.jss.2015.04.083

JOURNAL OF COMPUTER SCIENCE IMPLICATIONS

pg. 15

[41] Ndukwe, I. G., Licorish, S. A., Tahir, A., MacDonell, S. G.

(2023). How have views on software quality differed over

time? Research and practice viewpoints. Journal of Systems

and Software, 195, 111524.

[42] Ozcan, A., Çatal, Ç., Togay, C., Tekinerdogan, B.,

Donmez, E. (2020). Assessment of environmental factors

affecting software reliability: A survey study. Turkish

Journal of Electrical Engineering and Computer Sciences,

28(4), 1841-1858.

[43] Rashid, J., Mahmood, T., Nisar, M. W. (2019). A study

on software metrics and its impact on software quality.

Technical Journal, University of Engineering and Technology

(UET) Taxila, Pakistan, 24(1), 1-14.

[44] Sahu, K., & Srivastava, R.K. (2019). Revisiting software

reliability. Data Management, Analytics and Innovation:

Proceedings of ICDMAI 2018, 1, 221-235.

[45] Sahu, K., & Srivastava, R. K. (2020). Needs and

importance of reliability prediction: An industrial

perspective. Information Sciences Letters, 9(1), 33-37.

https://digitalcommons.aaru.edu.jo/isl/vol9/iss1/5

[46] Smidts, C., Stutzke, M., Stoddard, R. W. (1998).

Software reliability modeling: an approach to early

reliability prediction. IEEE Transactions on Reliability,

47(3), 268-278. doi: 10.1109/24.740500.

[47] Standard Glossary of Software Engineering

Terminology, STD-729-1991, ANSI/IEEE, 1991

[48] The cost of poor software quality in the us: a 2022

report. (2023). https://www.it-cisq.org/the-cost-of-poor-

quality-software-in-the-us-a-2022-report/

[49] Van Driel, W. D., Bikker, J. W., Tijink, M. (2021).

Prediction of software reliability. Microelectronics

Reliability, 119, 114074.

[50] Van Driel, W. D., Schuld, M., Wijgers, R., Van Kooten, W.

E. J. (2014). Software reliability and its interaction with

hardware reliability. In 2014 15th International Conference

on Thermal, Mechanical and Mulit-Physics Simulation and

Experiments in Microelectronics and Microsystems

(EuroSimE) Ghent, Belgium, 1-8. IEEE. doi:

10.1109/EuroSimE.2014.6813774

[51] Yadav, H. B., & Yadav, D. K. (2017). Early software

reliability analysis using reliability relevant software

metrics. International Journal of System Assurance

Engineering and Management, 8, 2097-2108.

https://doi.org/10.1007/s13198-014-0325-3

[52] Yang, L., Zhang, H., Shen, H., Huang, X., Zhou, X., Rong,

G., Shao, D. (2021). Quality assessment in systematic

literature reviews: A software engineering perspective.

Information and Software Technology, 130, 106397.

https://doi.org/10.1016/j.infsof.2020.106397

[53] Zhang, X., & Pham, H. (2000). An analysis of factors

affecting software reliability. Journal of Systems and

Software, 50(1), 43-56. https://doi.org/10.1016/S0164-

1212(99)00075-8

[54] Zhang, X., Shin, M. Y., Pham, H. (2001). Exploratory

analysis of environmental factors for enhancing the

software reliability assessment. Journal of Systems and

Software, 57(1), 73-78.

https://digitalcommons.aaru.edu.jo/isl/vol9/iss1/5
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/
https://www.it-cisq.org/the-cost-of-poor-quality-software-in-the-us-a-2022-report/
https://doi.org/10.1007/s13198-014-0325-3
https://doi.org/10.1016/j.infsof.2020.106397
https://doi.org/10.1016/S0164-1212(99)00075-8
https://doi.org/10.1016/S0164-1212(99)00075-8

