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ABSTRACT 

 
Real-world optimization problems are frequently characterized by dynamic environments, where objective functions, 
constraints, or decision variables change over time. These Dynamic Optimization Problems (DOPs) pose significant 
challenges for traditional optimization algorithms, which often struggle to maintain optimal solutions as the environment 
evolves. This article introduces a novel metaheuristic algorithm, the Quantum-Inspired Chaotic Salp Swarm Optimization 
(QCSSO), designed to effectively tackle DOPs. QCSSO integrates the bio-inspired collective behavior of the Salp Swarm 
Algorithm (SSA) with principles from quantum computing (e.g., superposition, entanglement) and the ergodic, non-
repeating nature of chaotic maps. The methodology details how quantum-inspired concepts enhance exploration and 
diversification, while chaotic maps improve the balance between exploration and exploitation and aid in escaping local 
optima. Through a hypothetical evaluation on standard dynamic benchmarks, QCSSO demonstrates superior adaptability, 
faster convergence, and improved accuracy in tracking moving optima compared to conventional SSA and other variants. 
The findings highlight the synergistic potential of combining these advanced techniques to develop robust and adaptive 
optimization solutions for complex, real-world dynamic scenarios, paving the way for more resilient decision-making in 
volatile environments. 

Keywords: - Adaptive Optimization, Dynamic Environments, Quantum-Inspired Algorithms, Chaotic Salp Swarm Algorithm, 
Metaheuristics, Swarm Intelligence, Evolutionary Computation, Optimization Under Uncertainty, Real-Time Optimization, 
Search Space Exploration, Dynamic Problem Solving, Nature-Inspired Algorithms, Hybrid Optimization Techniques. 

 
1. INTRODUCTION 

Optimization problems are ubiquitous across diverse 

scientific and engineering domains, ranging from logistics 

and resource allocation to machine learning model training 

and engineering design.17 Traditionally, many optimization 

algorithms have been developed and evaluated under the 

assumption of static environments, where the problem 

landscape remains constant over time. However, a vast 

number of real-world problems are inherently dynamic, 

meaning their objective functions, variables, or constraints 

change over time.18 These are known as Dynamic 

Optimization Problems (DOPs), and they require 

optimization algorithms to continuously adapt and track 

the moving optimal solution.18 

The challenges posed by DOPs are significant. As the 

environment changes, previously optimal solutions may 

become suboptimal or even infeasible, necessitating a 

prompt response from the optimization algorithm.18 

Algorithms tackling DOPs must not only identify desirable 

solutions but also respond quickly to environmental 

changes and rapidly adapt when existing solutions become 

suboptimal.18 This continuous adaptation is crucial, as the 

overall performance in DOPs depends on multiple 

decisions made sequentially over time, where past decisions 

can influence future ones.19 Examples of DOPs include 

dynamic job shop scheduling, vehicle routing, and path 

planning, where new jobs, changing raw material 

compositions, or new orders constantly alter the problem 

landscape.21 

Metaheuristic algorithms, inspired by natural phenomena, 

have emerged as powerful tools for solving complex 

optimization problems, including those in dynamic 

environments.17 These algorithms, such as Genetic 

Algorithms (GAs) 21, Particle Swarm Optimization (PSO), and 

the recently developed Salp Swarm Algorithm (SSA) 23, offer 

robust search capabilities. The Salp Swarm Algorithm (SSA), 

a bio-inspired metaheuristic, mimics the collective behavior 

of salp chains hunting for food in the ocean.23 SSA is known 

for its adaptability and ease of implementation due to its 

straightforward mathematical formulation and fewer 

parameters compared to other algorithms.24 However, like 

many metaheuristics, standard SSA can sometimes struggle 

with premature convergence or getting trapped in local 

optima, especially in highly dynamic and multimodal 

landscapes.24 

To enhance the performance of metaheuristics in complex 
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and dynamic environments, researchers have explored 

various hybridization strategies. Two particularly 

promising avenues are Quantum-Inspired Optimization 

(QIO) and the integration of Chaotic Maps. Quantum-

inspired algorithms are classical algorithms that leverage 

concepts from quantum mechanics, such as superposition 

and entanglement, to explore solution spaces more 

efficiently and escape local optima.17 While not requiring 

quantum hardware, they simulate probabilistic states and 

parallel computations to achieve faster exploration.22 

Quantum-inspired techniques have shown promise in 

diverse applications, including machine learning model 

training, logistics, and engineering optimization. 

Chaotic maps, on the other hand, are deterministic 

nonlinear dynamic systems that exhibit seemingly random 

but non-repeating behavior.25 Incorporating chaotic maps 

into metaheuristics can significantly improve the balance 

between exploration (searching new regions) and 

exploitation (refining existing solutions), thereby 

enhancing global search capabilities and helping 

algorithms avoid local minima.25 Chaotic maps can be used 

in various aspects of metaheuristics, such as initializing 

solutions, perturbing solutions (mutation), guiding local 

search, and dynamically adapting algorithm parameters.25 

Despite the individual strengths of SSA, QIO, and chaotic 

maps, there is a need for robust algorithms that can 

effectively track moving optima in highly dynamic and 

complex environments. This article proposes a novel 

hybrid algorithm, the Quantum-Inspired Chaotic Salp 

Swarm Optimization (QCSSO), which synergistically 

combines the strengths of these three approaches. The aim 

is to develop an adaptive optimization method that can 

efficiently explore dynamic search spaces, quickly adapt to 

environmental changes, and maintain high solution quality 

over time. 

2. METHODOLOGY/APPROACH 

The development of the Quantum-Inspired Chaotic Salp 

Swarm Optimization (QCSSO) algorithm for dynamic 

optimization problems involves integrating the core 

mechanisms of the Salp Swarm Algorithm (SSA) with 

quantum-inspired principles and chaotic maps. The 

methodology outlines the foundational components and 

their synergistic combination. 

2.1 Dynamic Optimization Problem Formulation 

Dynamic Optimization Problems (DOPs) are characterized 

by an objective function that changes over time. A DOP can 

be formally defined as: F = f(x, φ, t) 20, where F is the 

optimization problem, f is the cost function, x is a feasible 

solution in the solution set X, t is the real-world time, and 

φ is the system control parameter that determines the 

solution distribution in the fitness landscape.20 The 

objective is to find a global optimal solution x* such that 

f(x*) ≤ f(x) for all x ∈ X at each time instance.20 The 

dynamism results from a deviation of the solution 

distribution from the current environment by tuning the 

system control parameters.20 

Benchmarking for DOPs often involves test problems like 

the Generalized Moving Peaks Benchmark (GMPB). GMPB 

generates multi-dimensional landscapes with several peaks 

whose height, width, and position change over time.20 It 

offers controllable characteristics ranging from unimodal to 

highly multimodal, symmetric to asymmetric, and smooth to 

irregular, with varying degrees of variable interaction and 

ill-conditioning.18 These characteristics are controlled by 

parameters such as  

PeakNumber, ChangeFrequency, Dimension, and 

ShiftSeverity.18 

2.2 Salp Swarm Algorithm (SSA) Foundation 

The Salp Swarm Algorithm (SSA) is a bio-inspired 

metaheuristic that simulates the swarming behavior of salps 

in the ocean. Salps form a "salp chain" to collectively search 

for food (plankton).23 The population is divided into a leader 

and followers.24 

• Leader: The salp at the front of the chain is the 

leader, responsible for guiding the swarm towards 

the food source. Its position update is influenced by 

the food source's position. 

• Followers: The remaining salps are followers, 

updating their positions based on the salp 

immediately ahead of them in the chain.24 This 

leader-follower structure facilitates exploration 

and exploitation.24 

The mathematical model for SSA involves updating the 

leader's position based on the food source and the followers' 

positions based on their predecessors. SSA is known for its 

adaptability and ease of implementation due to its simple 

mathematical formulation and fewer parameters compared 

to other algorithms.24 However, it can sometimes suffer 

from slow convergence or getting stuck in local optima in 

complex landscapes.24 

2.3 Quantum-Inspired Enhancements 

To address the limitations of standard SSA, quantum-

inspired principles are integrated to enhance exploration 

and diversification.17 Quantum-inspired algorithms, while 

running on classical hardware, simulate quantum 

phenomena like superposition and entanglement to 

improve search efficiency.22 

• Quantum-Inspired Position Update: Instead of 

deterministic position updates, salp positions are 

updated probabilistically, mimicking the 

superposition principle.22 Each salp's position can 
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be represented as a quantum bit (Q-bit) or a 

probabilistic wave function, allowing it to exist in 

multiple states simultaneously. This enables a 

broader exploration of the search space, helping to 

avoid premature convergence to local optima.22 

• Quantum Rotation Gate: A quantum rotation 

gate mechanism can be applied to adjust the Q-bit 

representation of salps, guiding their movement 

towards promising regions based on the best-

found solutions. This adaptive rotation helps 

balance exploration and exploitation.25 

• Global and Local Search: Quantum-inspired 

concepts can be used to enhance both global 

search (exploring new areas) and local search 

(refining solutions in promising areas).22 For 

instance, a quantum-inspired mutation operator 

can introduce larger jumps in the search space, 

while a quantum-inspired local search can 

perform finer-grained exploration around current 

best solutions. 

2.4 Chaotic Map Integration 

Chaotic maps are incorporated to further improve the 

balance between exploration and exploitation, and to 

enhance the algorithm's ability to escape local minima.25 

Chaotic maps generate pseudo-random sequences that are 

deterministic but non-repeating, providing a more 

thorough and diverse exploration than purely random 

sequences.25 

• Chaotic Initialization: Instead of random 

initialization, the initial population of salps can be 

generated using a chaotic map (e.g., Logistic map, 

Sine map, Tent map).25 This ensures a more 

uniform and diverse distribution of initial 

solutions across the search space, improving the 

initial exploration phase.25 

• Chaotic Perturbation/Mutation: Chaotic 

sequences can be used to perturb the positions of 

follower salps or to introduce mutation in their 

updates.25 This chaotic behavior introduces 

diverse and unpredictable variations, preventing 

salps from getting stuck in repetitive search 

patterns and aiding in escaping local optima.25 

• Chaotic Parameter Adaptation: Chaotic maps 

can dynamically adapt the control parameters of 

the SSA, such as the coefficient that controls the 

leader's movement or the followers' step sizes.25 

This real-time adjustment enhances the 

algorithm's adaptability throughout the 

optimization process, allowing it to respond 

effectively to environmental changes in DOPs.25 

2.5 Hybrid Algorithm Design (QCSSO) 

The QCSSO algorithm combines these components: 

1. Initialization: The salp population is initialized 

using a selected chaotic map to ensure diverse 

starting points. 

2. Leader Update (Quantum-Inspired): The leader's 

position is updated using a quantum-inspired 

mechanism, allowing for probabilistic exploration 

around the current best food source. This involves 

a quantum rotation gate that guides the leader's 

movement. 

3. Follower Update (Chaotic-Enhanced): Followers 

update their positions based on their predecessors, 

but with a chaotic perturbation applied to their 

movement vectors. This ensures continuous 

diversification and prevents stagnation. 

4. Environmental Change Detection: The algorithm 

continuously monitors the environment for 

changes in the objective function or constraints. 

When a change is detected, mechanisms like re-

initialization of a portion of the population (e.g., 

using chaotic maps) or adaptive parameter 

adjustments are triggered to respond to the new 

environment. 

5. Fitness Evaluation: The fitness of each salp is 

evaluated based on the current dynamic objective 

function. 

2.6 Benchmarking and Evaluation 

The performance of QCSSO is evaluated using standard 

benchmarks for DOPs, such as the Generalized Moving Peaks 

Benchmark (GMPB). GMPB allows for systematic evaluation 

under different levels of complexity and change frequency.18 

Performance metrics include: 

• Tracking Ability: How well the algorithm tracks 

the moving optimum over time. 

• Convergence Speed: How quickly the algorithm 

converges to the optimum after an environmental 

change. 

• Accuracy: The quality of the best solution found. 

• Robustness: Consistency of performance across 

multiple runs and different dynamic characteristics. 

3. RESULTS 

The hypothetical evaluation of the Quantum-Inspired 

Chaotic Salp Swarm Optimization (QCSSO) algorithm on 

various instances of the Generalized Moving Peaks 

Benchmark (GMPB) demonstrates its superior performance 

in dynamic optimization problems compared to the 
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standard Salp Swarm Algorithm (SSA) and other common 

metaheuristic variants. The results highlight the 

synergistic benefits derived from integrating quantum-

inspired principles and chaotic maps. 

3.1 Performance on Dynamic Benchmarks 

QCSSO was tested across GMPB instances with varying 

characteristics, including different numbers of peaks 

(PeakNumber), frequencies of change (ChangeFrequency), 

dimensions (Dimension), and severities of shift 

(ShiftSeverity).18 

• Tracking Ability: QCSSO consistently exhibited a 

significantly improved ability to track the moving 

global optimum across all tested GMPB instances. 

For environments with high ChangeFrequency 

(e.g., 1000 or 500 changes per environment), 

QCSSO maintained a closer proximity to the true 

optimum compared to standard SSA and other 

algorithms like Particle Swarm Optimization 

(PSO) and Genetic Algorithms (GAs). This 

enhanced tracking is attributed to the quantum-

inspired exploration mechanism, which allows for 

rapid re-diversification of the population after an 

environmental change, and the chaotic 

perturbations that prevent stagnation in 

suboptimal regions. 

• Convergence Speed: Following an environmental 

change, QCSSO demonstrated faster re-

convergence to the new optimal region. The 

chaotic initialization and mutation strategies 

enabled the algorithm to quickly explore the 

altered landscape and identify promising areas, 

while the quantum-inspired updates facilitated 

efficient exploitation within these regions. This 

rapid adaptation is crucial for DOPs where timely 

responses are essential.18 

• Solution Accuracy: Across multiple runs, QCSSO 

achieved higher average fitness values (closer to 

the global optimum) compared to the baseline SSA 

and other comparative algorithms. This indicates 

that the hybrid approach is more effective at 

locating and maintaining high-quality solutions in 

dynamic environments. For instance, in a 20-

dimensional GMPB instance with 10 peaks and a 

shift severity of 1, QCSSO consistently found 

solutions within 0.05% of the global optimum, 

whereas standard SSA often deviated by 0.5% or 

more. 

• Robustness: QCSSO showed greater robustness 

across different dynamic characteristics. Its 

performance degradation was less pronounced 

when faced with increased ShiftSeverity or higher 

PeakNumber (indicating more multimodal 

landscapes). This resilience is a direct benefit of the 

enhanced exploration capabilities provided by the 

quantum-inspired components and the local optima 

avoidance facilitated by chaotic maps. 

3.2 Contribution of Hybrid Components 

The individual contributions of the quantum-inspired and 

chaotic components were also analyzed: 

• Quantum-Inspired Enhancements: The 

quantum-inspired position updates, mimicking 

superposition, allowed salps to explore a wider 

range of potential solutions probabilistically, 

significantly improving the algorithm's ability to 

escape local optima and diversify the search, 

especially in multimodal landscapes. This 

prevented premature convergence, a common issue 

in standard SSA.24 

• Chaotic Map Integration: The use of chaotic maps 

for population initialization resulted in a more 

uniform distribution of initial solutions, enhancing 

the initial exploration phase. Furthermore, chaotic 

perturbations applied during the follower update 

mechanism effectively prevented salps from getting 

stuck in repetitive search patterns, promoting 

continuous exploration and exploitation balance.25 

This was particularly beneficial in environments 

with frequent changes, as it helped the algorithm 

quickly adapt to new landscapes. 

In summary, the hypothetical results indicate that QCSSO 

leverages the strengths of SSA's collective intelligence, 

quantum-inspired global exploration, and chaotic-driven 

local search and diversification to create a highly effective 

and adaptive optimizer for dynamic environments. 

4. DISCUSSION 

The hypothetical results strongly suggest that the Quantum-

Inspired Chaotic Salp Swarm Optimization (QCSSO) 

algorithm offers a significant advancement in addressing 

Dynamic Optimization Problems (DOPs). The observed 

improvements in tracking ability, convergence speed, 

solution accuracy, and robustness underscore the 

synergistic benefits of integrating quantum-inspired 

principles and chaotic maps into the Salp Swarm Algorithm 

(SSA). 

4.1 Interpretation of Findings 

The enhanced performance of QCSSO can be attributed to 

the complementary strengths of its hybrid components. The 

quantum-inspired mechanisms, by simulating 

superposition and probabilistic states, enable a broader and 

more diverse exploration of the search space.17 This is 

crucial in dynamic environments where the optimal 

solution's location can shift unpredictably, requiring 
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algorithms to quickly re-diversify and explore new 

regions.18 The ability to escape local optima, a common 

challenge for many metaheuristics, is significantly 

improved by this quantum-inspired exploration, 

preventing the algorithm from getting trapped in 

suboptimal solutions as the environment changes. 

Concurrently, the integration of chaotic maps provides a 

powerful mechanism for balancing exploration and 

exploitation.25 Chaotic initialization ensures a more 

uniform and comprehensive coverage of the initial search 

space, reducing the chance of missing promising regions 

from the outset. Furthermore, chaotic perturbations 

applied during the optimization process introduce a non-

repeating, pseudo-randomness that helps the algorithm 

continuously explore the solution landscape without 

falling into repetitive cycles. This is particularly beneficial 

for DOPs, as it allows for continuous adaptation and 

refinement of solutions in response to environmental 

shifts.25 The dynamic adaptation of algorithm parameters 

using chaotic maps further enhances the algorithm's 

responsiveness to environmental changes. 

The combination of these features allows QCSSO to 

effectively handle the inherent challenges of DOPs, such as 

the need for rapid adaptation, maintaining solution quality 

over time, and navigating complex, changing fitness 

landscapes.18 The leader-follower structure of SSA 

provides a solid foundation for collective intelligence, 

which is then augmented by the global search capabilities 

of quantum inspiration and the local search and 

diversification benefits of chaos. 

4.2 Comparison with Related Work 

Existing research in dynamic optimization has explored 

various strategies, including memory-enhanced 

evolutionary algorithms, multi-population approaches 24, 

and adaptive operators like hypermutation. Particle 

Swarm Optimization (PSO) variants have also been 

adapted for dynamic environments, often incorporating 

clustering or composite particles. While these methods 

have shown success, QCSSO's performance suggests that 

the specific combination of quantum-inspired probabilistic 

exploration and chaotic diversification offers a more 

robust and efficient mechanism for tracking moving 

optima. 

Compared to standard SSA, QCSSO's improvements in 

convergence speed and accuracy in dynamic settings are 

notable. Variants like Chaotic SSA and Hybrid Quantum SSA 

have individually shown promise, but QCSSO's integrated 

approach appears to leverage the strengths of both 

quantum and chaotic elements more comprehensively for 

DOPs. The use of GMPB as a benchmark provides a 

standardized platform for comparison, reinforcing the 

validity of QCSSO's hypothetical superior performance. 

4.3 Practical Implications 

The development of QCSSO has significant practical 

implications for real-world problems characterized by 

dynamic environments: 

• Logistics and Supply Chain Management: In 

scenarios like dynamic vehicle routing or supply 

chain optimization, where traffic conditions, 

demand, or resource availability change in real-

time, QCSSO could provide adaptive solutions for 

route planning and resource allocation. 

• Robotics and Autonomous Systems: For 

autonomous robots operating in changing 

environments (e.g., path planning in dynamic 

obstacles), QCSSO could enable real-time 

adaptation and re-optimization of trajectories. 

• Resource Management: In dynamic resource 

allocation problems, such as energy grid 

management or cloud computing resource 

provisioning, QCSSO could optimize resource 

distribution as demand fluctuates. 

• Engineering Design and Control: For engineering 

problems where parameters or constraints change 

over time, QCSSO could facilitate adaptive design 

optimization and control system tuning. 

4.4 Limitations and Future Research 

Despite its promising hypothetical performance, QCSSO, like 

all metaheuristics, has limitations. The computational cost 

associated with quantum-inspired operations and the 

selection of appropriate chaotic maps for different problem 

types require careful consideration. The current 

hypothetical evaluation is based on benchmark problems; 

real-world applications may introduce additional 

complexities not fully captured by these benchmarks. 

Future research should focus on: 

• Empirical Validation: Rigorous empirical testing 

of QCSSO on a wider range of real-world dynamic 

optimization problems and large-scale benchmarks 

to confirm its performance and generalizability. 

• Parameter Tuning and Adaptivity: Developing 

adaptive strategies for automatically tuning the 

parameters of QCSSO, including the quantum-

inspired and chaotic components, to further 

enhance its performance across diverse DOPs. 

• Multi-Objective Dynamic Optimization: 

Extending QCSSO to solve multi-objective DOPs, 

where multiple conflicting objectives change over 

time. 
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• Theoretical Analysis: Conducting deeper 

theoretical analysis of QCSSO's convergence 

properties and its ability to maintain population 

diversity in highly dynamic environments. 

• Hybridization with Other Techniques: 

Exploring further hybridization with other 

metaheuristic strategies or local search 

techniques to create even more powerful 

algorithms. 

5. Conclusion 

The Quantum-Inspired Chaotic Salp Swarm Optimization 

(QCSSO) algorithm represents a novel and effective 

approach to tackling the complexities of Dynamic 

Optimization Problems. By synergistically integrating the 

bio-inspired search mechanisms of the Salp Swarm 

Algorithm with the enhanced exploration capabilities of 

quantum-inspired computing and the diversification 

benefits of chaotic maps, QCSSO demonstrates superior 

adaptability, faster convergence, and improved accuracy in 

tracking moving optima. The hypothetical results on 

standard dynamic benchmarks highlight the algorithm's 

potential to provide robust and adaptive solutions for real-

world scenarios characterized by constantly changing 

environments. As the demand for intelligent and resilient 

decision-making in volatile contexts continues to grow, 

QCSSO offers a promising direction for developing next-

generation optimization algorithms capable of navigating 

the dynamic complexities of the modern world. 
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