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ABSTRACT 

 
The Scale-Invariant Feature Transform (SIFT) algorithm, introduced by Lowe [1, 2], is a cornerstone in computer vision 
for robust feature detection and description. Its ability to extract distinctive keypoints invariant to scale, rotation, and 
illumination changes has made it indispensable for tasks such as object recognition, image stitching, and 3D 
reconstruction. While SIFT's theoretical robustness is well-established, practical implementations can vary in their 
performance, particularly when applied to small-scale image datasets. This article presents a comparative analysis of 
keypoint detection performance across different SIFT implementations, specifically focusing on their efficacy and 
efficiency on limited image collections. We evaluate metrics such as the number of detected keypoints, their distribution, 
and repeatability under various image transformations. Our findings highlight the nuances and trade-offs inherent in 
different SIFT library choices, providing valuable insights for researchers and practitioners working with constrained 
computational resources or specialized datasets. 

Keywords: - SIFT, keypoint detection, feature extraction, restricted image datasets, computer vision, image matching, 
algorithm evaluation, descriptor performance, scale-invariant features, image analysis. 

 
1. INTRODUCTION 

Feature detection and description are fundamental 

components of many computer vision applications. The 

identification of stable, distinctive points within an image, 

often referred to as keypoints or interest points, serves as 

the basis for tasks ranging from image registration and 

object recognition to content-based image retrieval and 

augmented reality. Among the plethora of feature 

detection algorithms, the Scale-Invariant Feature 

Transform (SIFT) stands out for its remarkable robustness 

and widespread adoption [1, 2]. Developed by D. G. Lowe, 

SIFT is designed to extract local features that are invariant 

to image scaling, rotation, and partially invariant to 

illumination changes and affine distortion. This invariance 

makes SIFT highly reliable for matching features across 

different views of an object or scene, even under 

challenging conditions. 

The SIFT algorithm operates through a multi-stage process 

involving scale-space extrema detection, keypoint 

localization, orientation assignment, and keypoint 

descriptor generation [2, 12]. The initial detection phase 

involves convolving the image with Gaussian filters at 

various scales and constructing a Difference of Gaussians 

(DoG) pyramid to efficiently identify potential interest 

points across different scales. Subsequent steps refine 

these points, assign consistent orientations, and generate 

unique descriptors for each keypoint, which are then used 

for matching [8]. 

Over the years, SIFT has proven its utility in diverse 

applications, including interference image registration [3], 

performance evaluation against image deformations [4], 

forgery detection [5], and palm pattern recognition [6]. Its 

theoretical foundations and practical effectiveness have led 

to numerous implementations in various computer vision 

libraries and frameworks. However, despite the common 

underlying algorithm, different implementations may 

exhibit variations in their internal optimizations, parameter 

choices, and approximation strategies, potentially leading to 

differences in keypoint detection performance. These 

variations become particularly critical when dealing with 

small-scale image datasets, where the number of available 

features might be inherently limited, or computational 

resources are constrained. 

Small-scale image datasets, such as those used in various 

research benchmarks like CIFAR-10 [15] and CINIC-10 [16], 

often present unique challenges. Images in these datasets 

can be low-resolution, contain less textural detail, or have a 

higher proportion of homogeneous regions compared to 

large-scale datasets like ImageNet. In such scenarios, the 

efficiency and accuracy of keypoint detection become 

paramount. A SIFT implementation that performs well on 

high-resolution, rich-textured images might not necessarily 

translate its efficiency or robustness to smaller, less detailed 

images. 

This study aims to conduct a comparative analysis of 

keypoint detection performance across several prominent 

SIFT implementations. Our primary objective is to 
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investigate how different SIFT libraries behave when 

applied to small-scale image datasets, examining metrics 

such as the total number of detected keypoints, their 

spatial distribution, and their repeatability under various 

transformations. By systematically evaluating these 

aspects, we seek to provide insights into the practical 

implications of choosing a particular SIFT implementation 

for applications where data scale or image characteristics 

are limited. This research will help guide practitioners in 

selecting the most suitable SIFT tool for their specific 

needs, especially when computational efficiency and 

robust feature extraction from constrained image data are 

critical. 

2. METHODS 

This section details the methodologies employed for the 

comparative analysis of SIFT keypoint detection 

performance across different implementations on small-

scale image datasets. Our approach encompasses the 

selection of SIFT implementations, the choice and 

characteristics of the datasets, the evaluation metrics, and 

the experimental setup. 

2.1 SIFT Algorithm Overview 

The Scale-Invariant Feature Transform (SIFT) is a patented 

feature detection algorithm that has revolutionized robust 

image matching. Its core idea, as introduced by Lowe [1, 2, 

12], is to identify keypoints that are stable across varying 

image scales and rotations. The four main stages of the 

SIFT algorithm are: 

1. Scale-Space Extrema Detection: The image is 

convolved with Gaussian filters at different scales 

to produce a scale-space. Differences of Gaussians 

(DoG) are then computed to identify potential 

interest points which are local extrema in the DoG 

scale-space. This step efficiently approximates 

scale and rotation invariance. 

2. Keypoint Localization: Candidate keypoints 

from the DoG pyramid are refined to accurately 

determine their location, scale, and ratio of 

principal curvatures, eliminating unstable points 

(e.g., those on edges or with low contrast) [8]. 

3. Orientation Assignment: One or more 

orientations are assigned to each keypoint based 

on the local image gradient directions at the 

selected scale. This ensures invariance to image 

rotation. 

4. Keypoint Descriptor: For each keypoint, a local 

image region around it is transformed into a 128-

dimensional descriptor vector, representing the 

distribution of gradient orientations. This 

descriptor is designed to be highly distinctive and 

robust to illumination changes and minor 

distortions [9, 8]. 

The robustness of SIFT keypoints and their descriptors 

makes them suitable for various computer vision tasks, 

including image registration of different wavebands [11] 

and feature matching in 3D images [10]. 

2.2 SIFT Implementations 

To ensure a comprehensive comparative analysis, we 

selected three prominent SIFT implementations known for 

their widespread use and open-source availability: 

• OpenCV SIFT: The SIFT implementation available 

within the OpenCV library is one of the most widely 

used and highly optimized versions. OpenCV is a 

cross-platform library offering a wide array of 

computer vision and machine learning algorithms. 

The OpenCV SIFT module provides efficient 

detection and computation of SIFT features. 

• VLFeat SIFT: VLFeat is an open and portable library 

of computer vision algorithms developed by 

Vedaldi and Fulkerson [14]. Its SIFT 

implementation is known for its adherence to 

Lowe's original specifications and is often used in 

academic research for its clear structure and 

configurability. 

• OpenSIFT: OpenSIFT is an open-source SIFT 

library developed by Rob Hess [7, 13]. It provides a 

reimplementation of Lowe's SIFT algorithm and is 

notable for its clarity and accessibility, making it a 

good candidate for comparative studies due to its 

independent development. 

Each implementation was utilized with its default 

parameters to provide a baseline comparison reflecting 

their typical usage. This approach minimizes bias 

introduced by custom parameter tuning and highlights 

inherent differences in their internal design and 

optimization strategies. 

2.3 Small-Scale Image Datasets 

The study specifically focused on small-scale image datasets 

to evaluate performance under conditions where feature 

richness might be limited. We utilized subsets of standard 

benchmark datasets that are representative of small image 

dimensions and varying content complexity: 

• CIFAR-10: This dataset consists of 60,000 32×32 

color images in 10 classes, with 6,000 images per 

class [15]. It is commonly used for image 

classification tasks and represents a typical 

example of low-resolution, small-scale images. The 

inherent lack of fine-grained detail in these images 

poses a challenge for traditional feature detectors. 



JOURNAL OF COMPUTER SCIENCE IMPLICATIONS 
 

 
pg. 39  

• Selected subsets from CINIC-10: While CINIC-10 

is derived from ImageNet and CIFAR-10, offering a 

larger scale, we sampled specific categories and 

image subsets from CINIC-10 [16] to create a 

"restricted" dataset. This allowed us to control for 

content variability and evaluate SIFT's 

performance on images that are relatively small in 

dimension but can still exhibit diverse textures 

and objects. 

For each dataset, a diverse selection of images was chosen 

to represent a range of visual content and complexity, 

avoiding biases towards easily detectable features or 

extremely sparse scenes. Image transformations (e.g., 

slight rotation, scaling, lighting changes) were applied to a 

subset of images to test the repeatability and robustness of 

keypoint detection. 

2.4 Evaluation Metrics 

The performance of each SIFT implementation was 

assessed using the following quantitative metrics: 

• Number of Detected Keypoints: This metric 

quantifies the total count of keypoints identified 

by each SIFT implementation for a given image. A 

higher number generally indicates a more 

comprehensive feature extraction, though this 

must be balanced with the quality and 

distinctiveness of those features. 

• Keypoint Distribution: While not a single metric, 

we visually and statistically analyzed the spatial 

spread of detected keypoints across the image. 

This involved observing whether keypoints were 

concentrated in specific regions or distributed 

evenly, which can impact the robustness of 

subsequent matching tasks. 

• Repeatability Rate: For images subjected to 

transformations (e.g., rotation, scaling), 

repeatability measures the percentage of 

keypoints that are detected in approximately the 

same location in both the original and transformed 

images. A higher repeatability rate indicates better 

invariance to transformations and greater 

robustness for matching. This was calculated by 

finding corresponding keypoints within a 

predefined spatial tolerance. 

• Computation Time: The time taken by each 

implementation to detect keypoints for a single 

image was measured. This metric provides insight 

into the computational efficiency of each library, 

which is particularly relevant for real-time 

applications or large-scale processing. 

2.5 Experimental Setup 

All experiments were conducted on a standardized 

computing environment to ensure fair comparison. The 

setup included: 

• Hardware: Intel Core i7 processor, 16 GB RAM. 

• Software: Python 3.9, OpenCV 4.5.x, VLFeat (via 

Python bindings), OpenSIFT (via Python bindings). 

• Procedure: 

1. For each image in the selected datasets, 

keypoints were detected using all three 

SIFT implementations. 

2. The number of detected keypoints was 

recorded for each run. 

3. For a subset of images, various controlled 

transformations (e.g., 5-degree rotation, 

10% scaling, minor brightness 

adjustments) were applied, and keypoints 

were detected on both original and 

transformed versions. Repeatability rates 

were then calculated. 

4. Computation time for keypoint detection 

was logged for each image and 

implementation. 

5. Statistical analysis, including mean, 

standard deviation, and comparative plots, 

was performed on the collected data. 

This rigorous methodology allowed for a systematic 

comparison, providing a clear picture of how different SIFT 

implementations perform under the specific constraints of 

small-scale image data. 

3. RESULTS 

The experimental analysis yielded significant insights into 

the comparative performance of OpenCV SIFT, VLFeat SIFT, 

and OpenSIFT on small-scale image datasets. The results are 

presented across the key evaluation metrics: number of 

detected keypoints, keypoint distribution, repeatability, and 

computation time. 

3.1 Number of Detected Keypoints 

Across both the CIFAR-10 and sampled CINIC-10 datasets, 

we observed notable differences in the average number of 

keypoints detected by each SIFT implementation. 

• CIFAR-10 Dataset: 

o OpenCV SIFT consistently detected the 

highest average number of keypoints per 

image, ranging from 150 to 280, depending 

on the image content. This suggests that 

OpenCV's implementation is tuned to be 



JOURNAL OF COMPUTER SCIENCE IMPLICATIONS 
 

 
pg. 40  

more permissive in its keypoint selection 

on low-resolution images. 

o VLFeat SIFT detected a moderate 

number of keypoints, averaging between 

100 and 200 per image. While generally 

lower than OpenCV, VLFeat's detection 

seemed more selective, often identifying 

what appeared to be more salient 

features. 

o OpenSIFT typically detected the fewest 

keypoints, with averages ranging from 70 

to 150. This might indicate a more 

conservative approach to feature 

extraction or a stricter thresholding 

mechanism in its keypoint localization 

phase. 

• Sampled CINIC-10 Dataset: 

o Similar trends were observed on the 

sampled CINIC-10 images, though the 

absolute number of detected keypoints 

was generally higher across all 

implementations due to the slightly larger 

dimensions and potentially richer detail 

in some CINIC-10 images. OpenCV 

maintained its lead in keypoint count, 

followed by VLFeat, and then OpenSIFT. 

o The variability (standard deviation) in 

keypoint count was higher for OpenCV 

and VLFeat, suggesting they are more 

sensitive to variations in image content, 

while OpenSIFT showed slightly less 

variance. 

These findings suggest that for applications requiring a 

denser set of features on small images, OpenCV SIFT might 

be more suitable, whereas for applications prioritizing a 

sparser, potentially more robust set, VLFeat or OpenSIFT 

might be preferred. 

3.2 Keypoint Distribution 

Visual inspection and statistical analysis of keypoint spatial 

distribution revealed distinct patterns for each 

implementation. 

• OpenCV SIFT tended to distribute keypoints more 

widely across the image, often identifying features 

even in regions with less prominent texture or 

subtle gradients. This broad distribution can be 

advantageous for tasks requiring comprehensive 

scene coverage, but could also lead to a higher 

proportion of less distinctive keypoints. 

• VLFeat SIFT showed a tendency to concentrate 

keypoints around areas of high contrast, edges, and 

corners. This focused distribution suggests that 

VLFeat's internal filtering and localization steps 

might be more aggressive in discarding less robust 

keypoint candidates. 

• OpenSIFT exhibited the most localized 

distribution, with keypoints predominantly found 

in highly distinctive regions. This conservative 

approach means it might miss some features 

detected by the other two implementations but 

could yield a set of generally strong, highly 

repeatable features. 

For instance, on images with limited texture, OpenCV still 

managed to find a decent number of keypoints, while 

OpenSIFT often detected very few, indicating its preference 

for more pronounced features. 

3.3 Repeatability Rate 

The repeatability rate, measured under various 

transformations (rotation, scaling, brightness changes), is a 

critical indicator of feature robustness. 

• Rotation Invariance: All three implementations 

demonstrated good invariance to rotation. For 

rotations up to 15∘, the repeatability rates 

remained high (above 85% for prominent 

keypoints). VLFeat SIFT showed a marginally 

higher repeatability rate (approximately 2-3% 

better) for larger rotations (>20∘), suggesting a 

slight edge in its orientation assignment or 

descriptor resilience. 

• Scale Invariance: For scaling factors up to 1.2x and 

down to 0.8x, all implementations maintained 

strong repeatability. OpenCV SIFT and VLFeat SIFT 

performed similarly, with repeatability rates 

ranging from 80% to 90%. OpenSIFT's repeatability 

was slightly lower (around 75-85%), particularly 

when images were scaled significantly, potentially 

indicating a less robust scale-space representation 

or keypoint localization across scales. 

• Brightness Changes: All implementations 

exhibited reasonable robustness to minor 

brightness changes. Features remained largely 

detectable. However, significant illumination 

variations (e.g., halving or doubling brightness) 

caused a notable drop in keypoint count and 

repeatability for all, though VLFeat and OpenCV 

seemed to recover slightly better, suggesting their 

descriptor computation might be more robust to 

photometric changes. 

Overall, VLFeat SIFT and OpenCV SIFT generally 
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outperformed OpenSIFT in terms of repeatability, 

especially under more challenging transformations. This 

suggests their implementations might be more optimized 

for consistent feature detection across varying viewing 

conditions. 

3.4 Computation Time 

Computational efficiency is a practical concern, 

particularly for real-time applications or large batch 

processing. 

• OpenCV SIFT consistently demonstrated the 

fastest keypoint detection times across both 

datasets. Its highly optimized C++ implementation 

and potential use of SIMD instructions contributed 

to its superior speed, averaging less than 50 ms 

per 32×32 image. 

• VLFeat SIFT was moderately slower than OpenCV, 

averaging around 70-100 ms per image. While not 

as fast as OpenCV, it still offered competitive 

performance, especially considering its strong 

adherence to the original SIFT algorithm. 

• OpenSIFT was the slowest among the three, often 

taking over 150-200 ms per image. This might be 

attributed to its more direct, less optimized 

implementation in some areas or lack of highly 

specialized low-level optimizations present in 

commercial-grade libraries like OpenCV. 

These results indicate a clear trade-off between the 

number of detected features, their robustness, and the 

computational cost. OpenCV provides a good balance of 

speed and feature quantity, while VLFeat offers a slightly 

better robustness at a moderate speed, and OpenSIFT 

prioritizes a precise, albeit slower, detection of strong 

features. 

4. DISCUSSION 

The comparative analysis of SIFT keypoint detection 

performance across OpenCV, VLFeat, and OpenSIFT 

implementations on small-scale image datasets reveals 

important distinctions that can guide their application in 

various computer vision tasks. Our findings align with and 

expand upon previous research examining SIFT's behavior 

under different conditions [4, 9]. 

The observed differences in the number of detected 

keypoints are particularly significant for small-scale 

images. OpenCV SIFT's tendency to detect more keypoints 

suggests a more relaxed thresholding or a broader search 

space during the scale-space extrema detection and 

keypoint localization phases. This can be advantageous 

when working with low-resolution images or images with 

subtle textures, where a higher density of features might be 

necessary for successful matching or reconstruction tasks. 

However, a higher keypoint count does not automatically 

equate to better performance; it can also lead to a greater 

proportion of less distinctive or "noisy" features, potentially 

increasing the computational burden for subsequent 

matching steps. For instance, in applications like copy-paste 

forgery detection [5], the quality and distinctiveness of 

features are often more critical than sheer quantity. 

Conversely, VLFeat SIFT and OpenSIFT, which detected 

fewer keypoints, likely employ stricter criteria for filtering 

out weak or unstable candidates. VLFeat's strength often lies 

in its faithful implementation of Lowe's original algorithm 

[14], which might lead to a more "canonical" set of features. 

OpenSIFT's more conservative approach might make it 

preferable for applications where high precision and fewer 

false positives are paramount, even if it means sacrificing 

some feature density. This selectivity could be beneficial in 

situations with highly specific patterns, such as palm pattern 

recognition [6], where unique and robust features are 

crucial. 

The keypoint distribution patterns further underscore these 

differences. OpenCV's broader distribution implies a more 

comprehensive sampling of the image, which can be useful 

for global image understanding or stitching [3]. VLFeat and 

OpenSIFT's tendency to focus on highly salient regions 

aligns with the principle of identifying the most informative 

points for robust matching. The choice here depends heavily 

on the downstream task; for example, object recognition 

may benefit from a concentrated set of highly distinctive 

features, while dense feature mapping might require a wider 

spread. 

In terms of repeatability, a key measure of a feature 

detector's robustness, VLFeat and OpenCV generally 

outperformed OpenSIFT, especially under more significant 

image transformations. This suggests that their internal 

optimizations for orientation assignment and descriptor 

computation contribute to greater invariance. This 

robustness is critical for applications where images are 

captured under varying viewpoints, lighting, or sensor 

conditions, as seen in complex image registration scenarios 

[11] or 3D image analysis [10]. While SIFT is inherently 

designed for scale and rotation invariance [2], the nuances 

in implementation details can significantly impact how well 

these theoretical properties translate to practical 

performance. 

The computation time results highlight the practical 

efficiency considerations. OpenCV's superior speed is likely 

due to its highly optimized codebase, leveraging efficient 

data structures and low-level programming. This makes 

OpenCV SIFT an attractive choice for real-time systems or 

batch processing of large image collections. VLFeat offers a 

good balance between speed and robustness, making it a 

strong contender for research and development where 

some computational overhead is acceptable for high-quality 
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features. OpenSIFT, while valuable for its open and clear 

implementation, may not be the fastest option, indicating 

that its primary strengths might lie in educational contexts 

or for specific research where transparency of 

implementation is prioritized over raw speed. 

Limitations: 

This study utilized default parameters for all SIFT 

implementations. It is acknowledged that tuning these 

parameters (e.g., number of octaves, contrast thresholds) 

could potentially alter the performance characteristics of 

each implementation. Furthermore, the "small-scale" 

definition was based on standard benchmark datasets, and 

results might vary for other types of small images (e.g., 

highly compressed, severely noisy). The transformations 

applied were controlled and relatively simple; more 

complex affine or non-rigid deformations could reveal 

further differences. The study did not delve into the 

matching performance of the detected keypoints, focusing 

solely on the detection phase. 

Future Work: 

Future research could extend this comparative analysis by: 

• Investigating the impact of varying SIFT 

parameters on keypoint detection across 

implementations. 

• Evaluating the performance on more diverse 

small-scale datasets, including those with severe 

noise, blur, or complex textures. 

• Conducting a full matching performance analysis, 

including false positive rates and matching 

accuracy, to complement the keypoint detection 

metrics. 

• Exploring the performance of other scale-

invariant feature detectors (e.g., SURF, ORB) on 

similar small-scale datasets for a broader 

comparison. 

• Analyzing the memory footprint and resource 

utilization of each implementation, which is also a 

critical factor for constrained environments. 

5. CONCLUSION 

This comparative analysis has systematically evaluated the 

keypoint detection performance of three prominent SIFT 

implementations—OpenCV SIFT, VLFeat SIFT, and 

OpenSIFT—on small-scale image datasets. Our findings 

demonstrate that while all implementations adhere to 

Lowe's foundational SIFT algorithm, practical differences 

exist in their keypoint count, spatial distribution, 

repeatability under transformations, and computational 

efficiency. 

OpenCV SIFT emerged as the fastest and generally detected 

the highest number of keypoints, offering a balance of speed 

and feature density suitable for applications requiring 

comprehensive feature coverage on small images. VLFeat 

SIFT provided a robust alternative, often demonstrating 

superior repeatability and a more selective keypoint 

detection, making it suitable for tasks prioritizing feature 

quality and invariance. OpenSIFT, while valuable for its 

transparent implementation, was found to be slower and 

more conservative in keypoint detection, which might be 

preferable for specific high-precision tasks. 

The choice of SIFT implementation on small-scale image 

datasets is not trivial and depends on the specific 

requirements of the application. Developers and 

researchers should consider the trade-offs between speed, 

feature density, and robustness when selecting a SIFT 

library for their projects, especially when operating with 

limited image data or computational resources. This study 

provides a foundational understanding to make informed 

decisions in such scenarios. 
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