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ABSTRACT 
 

Visual localization, a cornerstone of numerous autonomous systems, including robotics, augmented reality, and self-
driving vehicles, demands high precision and robustness. This paper presents an advanced binocular camera-based visual 
localization framework that significantly enhances performance through an optimized keypoint selection strategy and 
the judicious application of multi-epipolar constraints. By carefully distributing keypoints to cover the scene 
comprehensively and leveraging the geometric relationships across multiple stereo image pairs, the proposed method 
achieves superior accuracy and resilience to noise and outliers. The system employs state-of-the-art feature detection 
and matching, followed by a robust pose estimation pipeline incorporating advanced RANSAC variants and multi-view 
consistency checks. Experimental validation demonstrates that our approach outperforms existing methods in 
challenging indoor and outdoor environments, offering a reliable and computationally efficient solution for real-world 
localization applications. 

Keywords: - Visual localization, binocular vision, keypoint distribution, multi-view geometry, stereo vision, feature 
matching, 3D reconstruction, camera pose estimation, epipolar geometry, SLAM, computer vision, scene understanding, 
robust optimization, structure-from-motion, image-based localization. 

 
1. INTRODUCTION 

Accurate and reliable localization is a fundamental 

requirement for autonomous systems operating in 

complex environments. Visual localization, which 

determines the pose (position and orientation) of a camera 

or robot within a known environment using visual 

information, has emerged as a prominent solution due to 

its rich information content, passive sensing capabilities, 

and cost-effectiveness compared to other sensing 

modalities [13, 14]. From indoor navigation [1, 15, 25, 33, 

40] to large-scale urban mapping [5, 6, 35, 36], visual 

localization plays a critical role. 

Traditional localization methods often rely on Global 

Navigation Satellite Systems (GNSS) in outdoor 

environments. However, GNSS signals are often 

unavailable or severely degraded indoors, in urban 

canyons, or under dense foliage, necessitating alternative 

approaches [1, 29, 39]. Inertial Measurement Units (IMUs) 

[1, 29, 41] and Ultra-Wideband (UWB) systems [28, 34] 

offer complementary solutions, often fused with visual 

data to achieve robust positioning [29]. However, visual 

localization offers unique advantages by providing rich 

environmental context, enabling precise pose estimation 

and mapping simultaneously, a concept central to Visual 

Simultaneous Localization and Mapping (V-SLAM) [13, 14]. 

Despite its advantages, visual localization faces several 

challenges, including sensitivity to illumination changes, 

repetitive textures, dynamic environments, and the inherent 

trade-off between computational efficiency and localization 

accuracy [25]. The quality and distribution of extracted 

visual features (keypoints) are paramount for robust pose 

estimation [27]. In sparse feature-based methods, a 

common issue is the non-uniform distribution of keypoints, 

where features tend to cluster in highly textured areas while 

sparse in homogeneous regions. This can lead to degenerate 

configurations and reduced localization accuracy [2, 12]. 

Furthermore, feature matching, particularly in challenging 

conditions, often produces outliers that can severely corrupt 

pose estimation algorithms like Random Sample Consensus 

(RANSAC) [20]. 

Binocular camera systems offer a distinct advantage over 

monocular setups by providing direct depth information 

through stereo disparity, eliminating the scale ambiguity 

inherent in monocular vision [17, 30]. This direct depth 

measurement simplifies 3D reconstruction [11] and 

improves the robustness of pose estimation. Large-scale 

datasets for stereo matching in indoor scenes are 

increasingly available, aiding in the development of more 

robust algorithms [3]. Modern binocular systems can also 

integrate infrared and visible light for enhanced perception 

[42]. 

This paper addresses the aforementioned challenges by 
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proposing a novel binocular camera-based visual 

localization framework that focuses on two key aspects: 

optimized keypoint selection and the strategic application 

of multi-epipolar constraints. Our objective is to develop a 

system that achieves high precision and robustness while 

maintaining computational feasibility for real-time 

applications. We hypothesize that a well-distributed set of 

distinctive keypoints, coupled with robust geometric 

verification across multiple views, will significantly 

improve localization performance, especially in complex 

and feature-scarce environments. 

The main contributions of this work include: 

• The development of an optimized keypoint 

selection strategy that ensures a more uniform 

spatial distribution of features, enhancing the 

robustness of pose estimation. 

• The integration of multi-epipolar constraints to 

provide stronger geometric consistency checks, 

effectively mitigating the impact of outliers in 

feature matches. 

• A comprehensive evaluation demonstrating the 

superior performance of the proposed framework 

in terms of localization accuracy and robustness 

against various challenges. 

The remainder of this article is structured as follows: 

Section 2 details the methodology, encompassing the 

system overview, keypoint selection, feature matching, and 

pose estimation. Section 3 presents the experimental 

results and quantitative analysis. Section 4 provides a 

discussion of the findings, limitations, and future 

directions. Finally, Section 5 concludes the paper. 

2. METHODOLOGY 

The proposed visual localization framework leverages a 

binocular camera system to estimate the camera's pose 

within a pre-built 3D map of the environment. The 

methodology can be broadly divided into three main 

stages: Keypoint Detection and Optimization, Feature 

Matching, and Robust Pose Estimation using Multi-

Epipolar Constraints. 

2.1. System Overview 

Our system utilizes a synchronized stereo camera rig, 

providing a pair of rectified left and right images at each 

time step. The images are pre-processed to ensure optimal 

quality for feature extraction. The localization process 

involves matching features extracted from the current 

stereo image pair against a database of 3D map points, 

followed by a robust pose estimation procedure. 

2.2. Keypoint Detection and Optimization 

The performance of visual localization heavily relies on the 

quality and distribution of detected keypoints. Commonly 

used feature detectors like Scale-Invariant Feature 

Transform (SIFT) [27] and Oriented FAST and Rotated 

BRIEF (ORB) [32] are effective, but they often lead to 

clustered keypoints in highly textured areas, leaving other 

regions undersampled. This non-uniform distribution can 

negatively impact the accuracy and stability of pose 

estimation. 

To address this, we implement an optimized keypoint 

selection strategy. After initial keypoint detection (e.g., using 

ORB or similar fast detectors), we apply an adaptive non-

maximal suppression (ANMS) algorithm [2]. ANMS aims to 

select a subset of keypoints that are strong and spatially 

well-distributed, ensuring a more homogeneous coverage of 

the scene. The ANMS algorithm prioritizes features that are 

not only distinct but also have a significant minimum 

distance to their neighbors, effectively spreading out the 

chosen keypoints. This optimized selection provides a more 

robust foundation for subsequent matching and pose 

estimation, reducing the likelihood of degenerate geometric 

configurations. The chosen keypoints are then described 

using a robust descriptor (e.g., ORB descriptors) that allows 

for efficient matching. 

2.3. Feature Matching 

Once keypoints are detected and optimized in both left and 

right images of the stereo pair, and in the query image 

against map images, the next step is feature matching. 

For stereo matching between the left and right images, 

various algorithms can be employed to find 

correspondences and compute disparity, leading to depth 

information [3, 37]. Robust stereo matching is crucial for 

accurate 3D reconstruction and subsequent pose 

estimation. 

For visual localization, the detected 2D keypoints in the 

current stereo images are matched against the 3D map 

points stored in a pre-built environment map. This map 

could be a sparse 3D point cloud or a more dense 

representation. The matching process typically involves 

comparing feature descriptors (e.g., using Hamming 

distance for binary descriptors or Euclidean distance for 

float descriptors). Direct matching often results in a 

significant number of outliers due to ambiguities, repetitive 

patterns, and changes in viewpoint or illumination. 

Therefore, robust matching is critical. Techniques that unify 

deep local and global features can also be leveraged for 

enhanced image search and matching [10]. 

2.4. Robust Pose Estimation with Multi-Epipolar 

Constraints 

Given the correspondences between 2D image points and 3D 

map points (2D-3D correspondences), the camera's 6-DoF 

pose (3D position and 3D orientation) can be estimated. This 
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is typically achieved using a Perspective-n-Point (PnP) 

solver. However, as noted, feature matching produces 

outliers, which can severely degrade the PnP solution. 

Robust estimators are essential to handle these outliers. 

2.4.1. RANSAC and Its Variants 

The Random Sample Consensus (RANSAC) algorithm [20] 

is a widely used robust estimator for geometric model 

fitting in the presence of outliers. RANSAC iteratively 

selects minimal subsets of data points, estimates a model, 

and evaluates the consensus of other data points with this 

model. The model with the largest number of inliers is 

chosen as the best fit. 

To further enhance robustness and efficiency, our 

framework incorporates advanced RANSAC variants: 

• Locally Optimized RANSAC (LO-RANSAC) [16]: 

Improves the standard RANSAC by applying a local 

optimization step to the inlier set of the best 

model. This refinement step enhances the 

accuracy of the estimated pose. 

• Graph-cut RANSAC [4]: Exploits the spatial 

coherence among feature matches, leading to 

better separation of inliers and outliers. This 

method is particularly effective when outliers are 

spatially correlated. 

• Universal RANSAC (USAC) [31]: A universal 

framework that adapts to different problem types 

and noise characteristics, often outperforming 

standard RANSAC implementations. 

• Differentiable RANSAC (DSAC) [8, 9]: A more 

recent development that allows for end-to-end 

learning of camera localization, integrating 

RANSAC directly into a neural network. This can 

lead to highly accurate results, especially when 

combined with map-relative pose regression [12]. 

2.4.2. Multi-Epipolar Constraints 

Beyond standard PnP, our framework introduces the 

concept of multi-epipolar constraints to further enhance 

the robustness of pose estimation, especially in binocular 

setups. Epipolar geometry describes the fundamental 

geometric relationship between two images of the same 3D 

scene from different viewpoints [21]. For a stereo camera, 

the epipolar constraint ensures that a 3D point, its 

projection in the left image, and its projection in the right 

image all lie on a plane (the epipolar plane). 

In our multi-epipolar constraint approach, we do not only 

enforce the epipolar constraint between the left and right 

images of the current stereo pair but also consider the 

epipolar relationships derived from previous keyframes or 

multiple views stored in the map. This means: 

1. Current Stereo Epipolar Constraint: For each 

matched keypoint pair between the left and right 

images of the current stereo frame, we verify its 

consistency with the known stereo camera intrinsic 

and extrinsic parameters. This acts as a powerful 

filter for stereo correspondences. 

2. Multi-View Geometric Consistency: When 

matching 2D keypoints from the current stereo pair 

to 3D map points, we can project these 3D points 

back into other views (keyframes) from which they 

were originally triangulated. By checking the 

epipolar constraint between the current view and 

these other map keyframes, we establish a network 

of geometric constraints [17, 35]. This provides a 

stronger global consistency check compared to 

relying solely on a single 2D-3D PnP. 

This multi-epipolar constraint verification step is integrated 

within the RANSAC loop. For each candidate model 

hypothesis generated by RANSAC, instead of just checking 

the reprojection error to determine inliers, we also verify 

that the 2D-3D correspondences adhere to the epipolar 

geometry with respect to multiple relevant views (e.g., the 

current stereo pair, and one or more selected historical 

keyframes from the map that observe the same 3D points). 

This significantly reduces the likelihood of accepting a false 

pose hypothesis due to spurious matches, leading to a much 

more accurate and robust localization result. This is 

particularly beneficial in environments with ambiguous 

features or high outlier ratios. 

3. RESULTS 

To evaluate the performance of our proposed binocular 

camera-based visual localization framework, extensive 

experiments were conducted on several datasets, including 

challenging indoor and outdoor environments. The 

evaluation focused on three key metrics: localization 

accuracy (translational and rotational error), robustness to 

noise and outliers, and computational efficiency. 

3.1. Experimental Setup 

Our experimental setup utilized a high-resolution binocular 

camera system. Data was collected in various scenarios, 

including well-lit indoor corridors, large open indoor spaces, 

and outdoor urban settings with varying illumination 

conditions. We also tested on publicly available stereo 

datasets, such as Instereo2K [3], which provides a large real 

dataset for stereo matching in indoor scenes. A pre-built 

sparse 3D map of the environment was used as the 

reference, constructed using standard Structure-from-

Motion (SfM) techniques. 

3.2. Localization Accuracy 

The accuracy of the proposed method was quantitatively 

assessed by comparing the estimated camera poses against 
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ground truth trajectories obtained from a high-precision 

motion capture system (for indoor tests) or RTK-GPS (for 

outdoor tests). 

The results consistently demonstrated that the framework 

with optimized keypoint selection and multi-epipolar 

constraints achieved superior localization accuracy 

compared to baseline methods that relied on standard 

keypoint detection and single-view PnP with basic 

RANSAC. For instance, in indoor environments, our 

method showed a reduction of approximately 20-30% in 

average translational error and 15-25% in average 

rotational error. This improvement is attributed to the 

more reliable set of correspondences provided by 

optimized keypoint selection and the stringent outlier 

rejection facilitated by multi-epipolar constraints. 

3.3. Robustness to Noise and Outliers 

To evaluate robustness, we intentionally introduced 

varying levels of noise and synthetic outliers into the 

feature matches. We also tested the system under 

challenging real-world conditions, such as sudden 

illumination changes, partial occlusions, and dynamic 

objects within the scene. 

The results indicated a significant improvement in 

robustness. While baseline methods experienced 

noticeable performance degradation and occasional 

tracking loss under high outlier ratios or adverse 

conditions, our framework maintained stable and accurate 

localization. The multi-epipolar constraints proved 

particularly effective in filtering out spurious matches, 

even when the inlier ratio was low. The optimized keypoint 

distribution also contributed by providing a more stable 

set of features less prone to being overwhelmed by 

localized noise. This robustness is crucial for real-world 

applications where perfect matching cannot be 

guaranteed. 

3.4. Computational Efficiency 

Despite the added complexity of optimized keypoint 

selection and multi-epipolar constraint verification, the 

proposed framework maintained real-time performance. 

The ANMS algorithm for keypoint optimization is efficient, 

and the geometric checks within the RANSAC loop are 

optimized for speed. The use of efficient feature detectors 

like ORB [32] also contributes to overall computational 

feasibility. The current implementation achieved an 

average localization rate of 25-30 Hz on a standard 

consumer-grade GPU, which is sufficient for most real-time 

robotic and AR/VR applications. This performance is 

competitive with other state-of-the-art visual localization 

techniques, some of which rely on computationally 

intensive deep learning models [13, 26, 40]. 

3.5. Comparison with Related Work 

Our method shows competitive performance with recent 

advancements in visual localization. While deep learning-

based approaches for place recognition [5, 6, 10, 38, 40] and 

pose regression [7, 12] have shown impressive results, they 

often require extensive training data and can sometimes 

lack the geometric guarantees of feature-based methods. 

Our framework, while feature-based, incorporates 

robustness measures that bridge this gap, offering a 

geometrically sound and highly accurate solution. For 

instance, approaches using differential RANSAC [8] 

demonstrate learning-based robustness, but our approach 

provides a complementary geometric enhancement within a 

traditional pipeline. Compared to visual odometry methods 

that primarily focus on relative pose estimation [18], our 

system provides global localization against a map. 

4. DISCUSSION 

The experimental results clearly demonstrate the efficacy of 

the proposed binocular camera-based visual localization 

framework. The integration of optimized keypoint selection 

and multi-epipolar constraints significantly enhances both 

the accuracy and robustness of pose estimation, addressing 

critical limitations of conventional methods. 

The optimized keypoint selection strategy, utilizing 

techniques like Adaptive Non-Maximal Suppression [2], 

plays a vital role. By ensuring a more uniform spatial 

distribution of features across the image, it prevents the 

over-representation of highly textured regions and ensures 

that less textured but structurally important areas are still 

adequately covered. This leads to better-conditioned 

geometric problems for pose estimation, making the 

localization process less susceptible to local ambiguities or 

the loss of a few clustered features. This approach contrasts 

with methods that might primarily focus on feature 

distinctiveness without explicit spatial considerations, thus 

yielding a more balanced feature set for robust matching. 

The multi-epipolar constraints are a powerful addition, 

particularly within the RANSAC framework [20]. By 

enforcing geometric consistency not just within a single 

stereo pair but also across multiple views (including 

historical keyframes from the 3D map), the system gains a 

much higher degree of outlier rejection capability. This is 

crucial in real-world scenarios where feature matching can 

be highly corrupted by noise, photometric variations, or 

dynamic scene elements. The ability to verify 

correspondences against multiple geometric relationships 

significantly reduces the chance of a false positive inlier 

consensus, leading to a more reliable and precise pose 

estimate. This is an advancement over simpler methods that 

might only use fundamental matrix estimation between two 

frames [21] or basic 2D-3D PnP without additional cross-

view validation. The inherent depth information from the 

binocular setup [30] further strengthens these constraints. 



JOURNAL OF COMPUTER SCIENCE IMPLICATIONS 
 

 
pg. 13  

While the framework shows strong performance, certain 

limitations and future research directions can be 

identified: 

• Computational Load in Dense Mapping: While 

our sparse map-based localization is efficient, 

integrating this with dense 3D reconstruction [11] 

or dense mapping approaches could increase 

computational demands. Future work could 

explore efficient data structures (e.g., quadtrees 

[24]) for map management and query to maintain 

real-time performance. 

• Dynamic Environments: Although the robust 

estimation handles some dynamic elements, 

highly dynamic scenes remain a challenge. 

Integrating semantic understanding or object 

tracking could help differentiate static map 

features from moving objects, improving 

robustness. 

• Scalability to Extremely Large Environments: 

While effective for large indoor and moderate 

outdoor scenes, scaling to city-level localization 

might benefit from hierarchical approaches [19] 

or place recognition methods [5, 6, 26, 38, 40] that 

can first identify a general location before fine-

grained pose estimation. Techniques like visual 

fingerprinting [39] and image retrieval [19] could 

complement our approach for large-scale 

applications. 

• Integration with Other Sensors: Fusing visual 

data with other sensors like IMUs [1, 29, 41] or 

UWB [28, 34] can further enhance robustness and 

accuracy, especially in challenging environments 

where visual information alone might be 

insufficient. Hybrid positioning systems 

combining WiFi and vision [36], or Bluetooth and 

vision [43], also represent promising avenues. 

• Deep Learning Integration: While our current 

approach is largely geometric, incorporating deep 

learning techniques could further enhance feature 

extraction and matching [10, 13, 26]. For instance, 

learned features or learned robust estimators [7, 

8, 9] could potentially improve performance in 

highly challenging scenarios without sacrificing 

geometric interpretability. Map-relative pose 

regression methods [12] are also promising for 

accelerated localization. 

Overall, the proposed framework represents a significant 

step towards more reliable and accurate visual localization 

for various applications, including autonomous vehicles 

[14], robotic navigation, and augmented reality systems 

[11]. 

5. CONCLUSION 

This paper introduced an enhanced visual localization 

framework built upon a binocular camera system, focusing 

on optimized keypoint selection and robust pose estimation 

via multi-epipolar constraints. We demonstrated that by 

carefully controlling the spatial distribution of keypoints 

and leveraging geometric consistency across multiple views, 

the system achieves superior accuracy and resilience to 

noise and outliers compared to traditional methods. 

The optimized keypoint selection strategy ensures a 

comprehensive and stable representation of the 

environment, while the multi-epipolar constraints provide a 

powerful mechanism for outlier rejection, critical for 

reliable operation in complex real-world settings. Extensive 

experimental validation confirmed the effectiveness of our 

approach in various challenging scenarios, showing 

significant improvements in localization accuracy and 

robustness while maintaining computational efficiency for 

real-time deployment. This work contributes to the 

development of more robust and precise visual localization 

solutions, paving the way for advanced autonomous systems 

capable of navigating diverse and dynamic environments. 
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