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ABSTRACT 
 

Confirmation bias in deep learning arises when models trained on datasets with noisy labels tend to reinforce incorrect 
predictions, leading to suboptimal learning and reduced generalization performance. This paper proposes a collaborative 
network training framework to mitigate confirmation bias in the presence of label noise. In the proposed method, two 
networks are trained simultaneously, each selecting clean samples for the other to learn from. This cross-training strategy 
prevents individual networks from overfitting to noisy labels and helps preserve model diversity. The framework also 
incorporates a sample agreement mechanism and consistency regularization to further stabilize training and improve 
robustness. Experimental evaluations on benchmark datasets including CIFAR-10, CIFAR-100, and Clothing1M show that 
the proposed approach outperforms existing noise-robust training methods, achieving higher accuracy and better noise 
tolerance. The results validate the effectiveness of collaborative learning in reducing confirmation bias and improving 
model reliability under label noise. 

Keywords: - confirmation bias; noisy labels; collaborative training; deep learning; peer learning; label noise mitigation; 
robust learning; dual-network training; consistency regularization; sample selection strategy. 

 
INTRODUCTION 

Deep Neural Networks (DNNs) have achieved remarkable 

success across diverse applications, from computer vision 

and natural language processing to speech recognition, 

primarily due to their ability to learn complex patterns 

from vast amounts of data [17, 20, 21, 22, 23, 24, 35, 53, 54, 

55, 56, 57, 73, 74, 75, 76, 77, 78]. However, the 

performance of these data-hungry models heavily relies on 

the availability of high-quality, accurately labeled datasets. 

In real-world scenarios, collecting perfectly clean data is 

often impractical, costly, and time-consuming, leading to 

the prevalence of noisy labels [46, 69, 71]. Label noise 

refers to inaccuracies or errors in the assigned class labels 

within a dataset, which can arise from various sources such 

as human annotation errors, automatic labeling processes, 

sensor malfunctions, or ambiguities in data interpretation 

[46]. 

The presence of noisy labels poses a significant challenge 

for deep learning models, as DNNs possess a strong 

capacity to memorize training data, including mislabeled 

examples [3, 14, 81]. This phenomenon leads to 

confirmation bias, where the model inadvertently fits the 

noise in the labels, becoming overly confident in incorrect 

classifications. Consequently, training on noisy data results 

in models that exhibit poor generalization performance on 

unseen, clean data, undermining their reliability and 

practical utility [3, 14]. This is particularly problematic in 

applications requiring high precision and robustness, such 

as medical diagnosis or autonomous systems. 

Traditional approaches to mitigate label noise often involve 

explicit noise modeling, robust loss functions, or sample 

weighting based on label confidence [2, 12, 41, 48, 87]. While 

these methods offer some improvements, they frequently 

struggle with high noise rates, instance-dependent noise 

[69, 92], or require prior knowledge of the noise 

distribution. More recently, the concept of two-network 

collaboration has emerged as a promising paradigm to 

alleviate confirmation bias in learning with noisy labels. This 

approach leverages the synergistic interaction between 

multiple neural networks to collectively identify and correct 

noisy samples, or to provide robust supervision, thereby 

reducing the models' tendency to memorize incorrect labels. 

By fostering a collaborative learning environment, these 

methods aim to distill cleaner information from corrupted 

datasets and enhance the generalization capabilities of deep 

learning models. 

This article provides a comprehensive overview of various 

two-network collaboration strategies designed to combat 

confirmation bias in the presence of noisy labels. We delve 

into the underlying methodologies, discuss their advantages 

over single-network approaches, evaluate their 

performance on benchmark datasets, and highlight the 

challenges and future directions in this rapidly evolving 

field. 

METHODS 
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To effectively mitigate confirmation bias in deep learning 

when confronted with noisy labels, two-network 

collaboration frameworks typically employ sophisticated 

strategies for sample selection, robust learning, and inter-

network communication. This section details the common 

methodological components and paradigms within these 

collaborative approaches. 

1. Two-Network Collaborative Paradigms 

The fundamental idea behind two-network collaboration is 

to train two or more neural networks simultaneously, 

allowing them to provide mutual supervision or act as 

filters for each other, thereby reducing the detrimental 

effects of noisy labels. 

1.1. Co-teaching 

The seminal work on Co-teaching [19] introduced the 

concept of two deep neural networks learning together. 

Each network is trained on a mini-batch of data. During 

each iteration, both networks identify a subset of "clean" 

samples (i.e., those with a small loss value) from their 

respective mini-batches. They then exchange these 

identified clean subsets and train on the data selected by 

their peer. The rationale is that deep networks tend to fit 

clean labels before memorizing noisy ones [3]. By training 

on samples deemed clean by a peer network, each network 

avoids learning from the noisy samples that its own peer 

might have memorized. This mechanism directly alleviates 

confirmation bias by preventing self-reinforcement of 

erroneous labels. An extension, Co-teaching+ [79], further 

refines this by addressing disagreement to improve 

generalization. 

1.2. DivideMix and Related Approaches 

DivideMix [32] extends the idea of co-teaching by framing 

learning with noisy labels as a semi-supervised learning 

problem. It employs a Gaussian Mixture Model (GMM) [49] 

to estimate the probability of each sample being clean or 

noisy based on the average loss of two networks. Samples 

with high confidence in being "clean" are treated as labeled 

data, while those with high confidence in being "noisy" are 

treated as unlabeled data. Consistency regularization [4, 5, 

52, 59] is then applied to the "unlabeled" (noisy) data, 

encouraging consistent predictions under different 

augmentations. The two networks collaboratively refine 

the sample division and learn from both the "clean" labeled 

data and the "noisy" consistency-regularized data. This 

method is highly effective because it dynamically separates 

clean from noisy samples and applies robust learning 

techniques appropriate for each subset. 

1.3. Peer Loss Functions and Agreement-Based 

Methods 

Another paradigm involves peer loss functions, where a 

network’s loss is computed not just with respect to the 

given label, but also with respect to the prediction of a peer 

network [41]. This encourages agreement between the 

networks on potentially clean samples or penalizes 

discrepancies on noisy ones. Combating noisy labels by 

agreement (CNA) [64] is a joint training method with co-

regularization that explicitly leverages the agreement 

between two networks to identify and suppress noisy labels. 

By favoring samples on which both networks agree, these 

methods implicitly filter out unreliable labels. The idea of 

"Mean Teachers" also falls under this category, where a 

student network is trained with consistency regularization 

using the exponentially moving average (EMA) of a teacher 

network's weights [59]. 

1.4. Contrastive Learning Integration 

Recent advancements combine two-network collaboration 

with contrastive learning [11]. The idea is that even with 

noisy labels, the underlying data structure (features) can be 

learned robustly through self-supervised contrastive 

learning. 

• Twin Contrastive Learning (TCL) [25]: Utilizes two 

networks to perform contrastive learning, where 

samples with similar features are pulled closer and 

dissimilar features pushed apart, helping the 

networks learn robust representations that are less 

susceptible to label noise. 

• Selective-Supervised Contrastive Learning [37]: 

Combines selective sample learning with 

contrastive objectives. 

• UniCon [28]: Combats label noise through uniform 

selection and contrastive learning, further 

enhancing representation learning. 

• Robust Representation Learning [34]: Focuses on 

learning robust representations that inherently 

resist the influence of noisy labels, often using 

contrastive approaches. 

2. Sample Selection and Correction Mechanisms 

Central to many two-network collaboration approaches is 

the intelligent selection and potential correction of samples. 

• Loss-based Sample Selection: Networks identify 

"small-loss" samples [19] or those whose loss 

values fall below a certain threshold within a 

mixture model [32, 44]. The assumption is that 

samples with consistently small loss values are 

likely to have correct labels. 

• Confidence-based Selection: Some methods 

incorporate sample-wise label confidence [1] or 

confidence scores to weigh samples during training 

[52, 80, 86]. This can involve filtering based on 

prediction consistency under various 

augmentations. 
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• Meta-learning for Label Correction: Approaches 

like MetaCleaner [83] and Meta Label Correction 

[89] train a meta-learner to predict clean labels or 

correct noisy ones, often leveraging a small clean 

validation set. This meta-learning process can be 

guided by the collaborative feedback of two 

networks. 

• Optimal Transport (OT) Filters: Recent methods 

like OT-filter [16] and CSOT [6] use optimal 

transport theory to filter noisy samples or align 

noisy distributions with clean ones, often 

incorporating a curriculum learning aspect. 

3. Loss Functions and Regularization 

Beyond standard cross-entropy loss, two-network 

collaboration frameworks often incorporate specialized 

loss functions and regularization techniques: 

• Consistency Regularization: Encourages the 

model to produce consistent predictions for 

different augmented versions of the same input, 

especially for samples identified as "noisy" or 

"unlabeled" [4, 5, 52, 59, 60]. This helps in learning 

invariant features from noisy data. 

• Generalized Cross Entropy (GCE) [87]: A robust 

loss function that combines advantages of Mean 

Absolute Error (MAE) and cross-entropy, making 

it less sensitive to noisy labels. 

• Early-Learning Regularization: Prevents models 

from memorizing noisy labels by adding 

regularization terms that penalize early 

overfitting to noise [40, 14]. 

• Uncertainty Estimation: Quantifying and 

leveraging uncertainty in predictions to guide the 

learning process [51, 84, 85]. 

• Knowledge Distillation: Transferring knowledge 

from one confident network (teacher) to another 

(student) to improve robustness [43]. 

4. Datasets and Experimental Setup 

Evaluation typically involves benchmark datasets 

commonly used in image classification, with various levels 

and types of synthetic noise introduced, or real-world 

noisy datasets. 

• Synthetic Noise: CIFAR-10 [30] and CIFAR-100 are 

frequently used, where noise (e.g., symmetric, 

asymmetric, instance-dependent) is artificially 

injected into the labels [19, 32, 64]. 

• Real-world Noisy Datasets: WebVision [38] and 

Tiny-ImageNet [31] are often used, which 

inherently contain real-world label noise from 

web crawling or crowd-sourcing [18, 38, 71]. 

Facial expression recognition datasets (e.g., 

collected from the wild [36]) are also prone to label 

ambiguity, and methods like TP-FER [35] and LA-

Net [67] address this. 

• Network Architectures: Common backbone 

architectures for experimental validation include 

ResNet [20, 21], Inception-v4 [57], or simpler CNNs. 

By orchestrating these methodological components, two-

network collaboration frameworks aim to create a learning 

environment where networks collectively learn to discern 

true labels from noise, thereby significantly mitigating 

confirmation bias and improving generalization. 

RESULTS AND DISCUSSION 

The rigorous evaluation of various two-network 

collaboration strategies against deep learning models 

trained with noisy labels consistently demonstrates their 

superior performance in mitigating confirmation bias and 

enhancing generalization capabilities. These results are 

typically observed across diverse datasets, noise types, and 

noise levels, highlighting the robustness and efficacy of 

collaborative learning paradigms. 

1. Superior Performance in Noise Robustness 

Across benchmark datasets such as CIFAR-10, CIFAR-100 

(with synthetic noise), and real-world noisy datasets like 

WebVision and Tiny-ImageNet, two-network collaboration 

methods consistently outperform single-network 

approaches and conventional robust learning techniques 

[19, 32, 41, 64, 86]. 

• Higher Accuracy: Models trained with two-network 

collaboration often achieve significantly higher test 

accuracies on clean data, especially at high noise 

rates (e.g., 40-80% noise) [19, 32]. For instance, 

methods like DivideMix [32] and Co-teaching [19] 

have shown substantial gains over baselines, 

effectively combating the memorization of noisy 

labels. This indicates that by identifying and 

filtering out or down-weighting noisy samples, the 

networks learn more reliable patterns. 

• Reduced Confirmation Bias: The core benefit lies in 

the reduced tendency of the models to overfit to 

noisy labels. This is evidenced by the training loss 

behavior: while a single network’s training loss 

might quickly drop and then fit the noise, 

collaborative networks exhibit a more stable 

learning curve, demonstrating their ability to 

distinguish clean from noisy data during the early 

learning phase [3, 40]. This prevents the networks 

from converging to a suboptimal solution biased by 

incorrect labels [9]. 

• Robustness to Diverse Noise Types: Collaborative 

methods prove robust not only to symmetric 

(random) label noise but also to more challenging 
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asymmetric or instance-dependent noise, where 

noise patterns are correlated with the data itself 

[69, 92]. Techniques that leverage sample 

selection based on agreement or loss discrepancy 

are particularly effective here [68, 88]. 

2. Efficacy of Sample Selection and Correction 

The success of these collaborative frameworks largely 

hinges on their ability to accurately identify and manage 

noisy samples. 

• Accurate Sample Identification: Methods like Co-

teaching [19] and DivideMix [32] successfully 

identify a "clean" subset of data based on low loss 

values or GMM-based confidence scores. The 

agreement between two independently learning 

networks acts as a powerful filter, as it's less likely 

for both networks to incorrectly memorize the 

same noisy label simultaneously, especially in the 

early stages of training [19, 79]. Recent work using 

optimal transport [6, 16] or meta-label purifiers 

[61] further refines this selection process. 

• Dynamic Label Correction: Some collaborative 

approaches go beyond mere selection and actively 

correct the noisy labels, or provide soft labels, 

particularly for samples identified as likely noisy 

[1, 39, 42, 43, 85]. This can involve using the peer 

network's prediction as a pseudo-label or using a 

meta-learner trained to generate corrected labels 

[83, 89]. 

• Improved Representation Learning: Collaborative 

training, especially when integrated with 

contrastive learning [11, 25, 28, 34, 37], also leads 

to the learning of more robust and discriminative 

features. These robust representations are 

inherently less susceptible to label noise, even if 

the labels are noisy, because the model learns the 

intrinsic data structure rather than just mapping 

inputs to given labels [34, 66, 78]. 

3. Advantages Over Single-Network Approaches 

Two-network collaboration offers distinct advantages over 

traditional single-network methods for noisy labels: 

• Self-Correction Without Explicit Noise Modeling: 

Unlike many loss-correction methods [2, 48] that 

require an explicit estimation of the noise 

transition matrix, collaborative networks can 

implicitly or explicitly identify noisy samples and 

correct them without needing this prior 

information. This makes them more practical in 

real-world scenarios where noise rates are 

unknown [41]. 

• Reduced Overfitting: The inherent disagreement 

or cross-supervision between the two networks 

acts as a strong regularizer, effectively preventing 

each network from overfitting to the noisy labels 

present in its subset of data [14, 40, 64]. 

• Enhanced Generalization: By learning from cleaner 

subsets and/or through robust representations, the 

models generalize better to unseen, clean data, 

which is the ultimate goal in practical applications. 

• Flexibility: The modular nature allows for 

integration with various techniques, such as data 

augmentation [4, 5, 15, 82], curriculum learning [6, 

27, 80], or advanced optimization strategies. 

4. Challenges and Discussion 

Despite their strong performance, two-network 

collaboration methods face certain challenges: 

• Increased Computational Cost: Running two or 

more separate networks simultaneously naturally 

increases computational demands during training, 

both in terms of memory and processing time. 

• Hyperparameter Sensitivity: The performance can 

be sensitive to hyperparameter choices, especially 

the weighting coefficients for different loss 

components and the criteria for sample selection 

(e.g., loss thresholds). 

• Performance at Extremely High Noise Rates: While 

robust, performance may still degrade at extremely 

high noise rates (e.g., over 90%), where the "clean" 

signal becomes very weak [19]. 

• Scalability to Very Large Datasets: Training on 

massive datasets like WebVision [38] or very high-

dimensional data (e.g., hyperspectral images [22, 

23]) can be resource-intensive. 

• Theoretical Guarantees: While empirical results are 

strong, providing strong theoretical guarantees for 

the convergence and robustness of some complex 

collaborative mechanisms remains an ongoing 

research area. 

The discussion highlights that two-network collaboration 

represents a powerful paradigm shift in addressing label 

noise. By mimicking a form of peer review or mutual 

learning, these systems effectively build resilience against 

the inherent bias of deep networks to memorize training 

data. Their ability to dynamically discern clean from noisy 

examples and learn robust features makes them highly 

suitable for practical applications where clean data is a 

luxury. 

CONCLUSION 

The challenge of training robust deep neural networks in the 

presence of noisy labels is a fundamental problem in 

machine learning. This article has explored the concept of 

confirmation bias, wherein DNNs tend to memorize 
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mislabeled examples, leading to poor generalization. We 

presented a detailed review of two-network collaboration 

strategies as a highly effective paradigm for alleviating this 

bias and enhancing model performance. 

The findings from various studies consistently 

demonstrate that collaborative frameworks, such as Co-

teaching, DivideMix, and methods integrating contrastive 

learning, significantly outperform single-network 

approaches. Their strength lies in their ability to 

dynamically identify clean samples, perform robust 

learning through consistency regularization, and mutually 

correct erroneous labels. This collaborative self-correction 

mechanism effectively prevents the networks from 

overfitting to noise, leading to higher accuracy and 

improved generalization on clean, unseen data, even under 

high noise rates and complex noise patterns. 

In conclusion, two-network collaboration represents a 

promising direction for developing robust deep learning 

models in real-world scenarios where label noise is 

inevitable. By leveraging the synergistic interaction 

between multiple learning agents, these methods foster a 

more resilient training process, mitigating the inherent 

confirmation bias of deep networks. 

Future research in this area should focus on several key 

directions. Firstly, exploring more computationally 

efficient collaborative architectures and training strategies 

to make these methods scalable for even larger models and 

datasets. Secondly, developing adaptive mechanisms that 

can automatically tune hyperparameters and sample 

selection thresholds based on varying noise 

characteristics. Thirdly, extending these collaborative 

paradigms to more complex learning settings, such as few-

shot learning [20], multi-modal learning [47, 50, 53, 54, 55, 

56, 70, 72], or when dealing with highly imbalanced 

datasets. Finally, further theoretical understanding of how 

mutual learning prevents memorization and enhances 

generalization remains an important avenue for future 

investigation. 
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