
JOURNAL OF COMPUTER SCIENCE IMPLICATIONS 
 

 
pg. 7  

Real-Time Digital Twin for Stewart Platform Control and Trajectory Synthesis 
 

Dr. Julian Blackwood 
Lab for Intelligent Control and Digital Systems 

Institute of Advanced Studies in Computer Science, Edinburgh, UK 
 

Professor Elara Croft 
Department of Robotics and Intelligent Systems 

National Institute of Advanced Technologies, Seoul, South Korea 

 

 
V0LUME04 ISSUE01 (2025) 

Published Date: 24 February 2025 // Page no.: - 07-13  

 

ABSTRACT 
 

This article presents the design, implementation, and validation of a real-time digital twin for a Stewart platform, 

integrated with advanced trajectory computation capabilities. Stewart platforms, known for their high precision and 

multi-degree-of-freedom motion, are widely used in applications such as flight simulators, medical devices, and 

manufacturing systems. The integration of a digital twin allows for real-time monitoring, predictive analysis, and 

enhanced control, thereby improving the system's operational efficiency and resilience. This work details the 

architectural framework of the digital twin, the methods for real-time data synchronization, the algorithms for 

dynamic trajectory generation, and the validation of the virtual model against the physical Stewart platform. The 

proposed system demonstrates significant potential for improving the control, diagnostics, and overall performance 

of complex robotic manipulators through a comprehensive virtual representation. 

Keywords: - Digital Twin, Stewart Platform, Real-Time Control, 6-DOF, Trajectory Planning, Inverse Kinematics, HiL 

Simulation, Resilient Robotics, Edge Computing, Parallel Manipulator. 

 

1. INTRODUCTION 

Stewart platforms, also known as parallel manipulators 

or Hexapods, are six-degree-of-freedom (6-DOF) parallel 

kinematic machines that offer distinct advantages over 

serial manipulators, including high stiffness, high 

payload capacity, high precision, and better dynamic 

performance [4]. These characteristics make them 

suitable for a diverse range of applications, from flight 

simulators and motion bases [5, 20] to precision surgery 

[26], large radio telescopes [16], and various industrial 

processes [3]. The inherent complexity of their 

kinematics and dynamics, however, necessitates 

sophisticated control strategies and robust monitoring 

systems to ensure optimal performance and safety. 

The concept of a Digital Twin (DT) has emerged as a 

cornerstone of Industry 4.0, offering a virtual replica of 

a physical asset, process, or system [14, 19]. This virtual 

counterpart is continuously updated with real-time data 

from its physical twin, enabling comprehensive 

monitoring, analysis, and predictive capabilities [19]. 

Digital twins facilitate enhanced decision-making, 

predictive maintenance, fault diagnosis, and optimization 

of operational parameters [10, 13]. The integration of 

real-time data, computational models, and advanced 

analytics allows the digital twin to simulate, predict, and 

ultimately, improve the behavior of its physical 

counterpart [19]. Furthermore, the evolution towards 

cognitive digital twins emphasizes the incorporation of 

artificial intelligence and machine learning for enhanced 

resilience and autonomous decision-making in 

production environments [6, 7, 22]. The architecture of 

such systems often involves lightweight communication 

protocols like CoAP for IoT devices and MQTT for data 

pipelines [1, 9]. 

Despite the growing adoption of digital twin technology 

across various industries, its comprehensive application 

to complex parallel manipulators like the Stewart 

platform, particularly concerning real-time trajectory 

computation and dynamic interaction, remains an area 

with significant potential for advancement. Existing work 

has explored dynamic modeling and simulation of 

Stewart platforms [2], and validation through digital 
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twins for irregular geometries [3]. Some studies have 

also delved into PID control implementations [15] and 

advanced simulation techniques like MiL (Model-in-the-

Loop) and HiL (Hardware-in-the-Loop) for control 

development [24]. However, a holistic approach that 

seamlessly integrates real-time trajectory synthesis with 

a functional digital twin for predictive control and 

performance optimization is crucial. 

This article aims to address this gap by proposing and 

implementing a real-time digital twin for a Stewart 

platform, specifically focusing on its ability to compute 

and simulate complex trajectories in real-time. The 

objective is to create a dynamic, living digital 

representation that can not only mirror the physical 

platform's state but also predict its future movements 

based on computed trajectories, offering an advanced 

tool for system testing, operator training, and enhanced 

control. Such a system will contribute to improving the 

resilience and agility of manufacturing and robotic 

systems by preparing for unexpected events and 

optimizing performance [12, 27]. 

The subsequent sections detail the methodological 

approach, encompassing the modeling of the Stewart 

platform, the architecture of the real-time digital twin, 

the real-time trajectory computation algorithms, and 

the practical implementation. This is followed by the 

presentation and discussion of the results, highlighting 

the efficacy and potential impact of the developed 

system. 

 
2. METHODOLOGY 

The development of a real-time digital twin for a Stewart 

platform with integrated trajectory computation 

involves several interconnected stages: physical 

modeling of the platform, architectural design of the 

digital twin, implementation of real-time data exchange, 

and the development of trajectory generation 

algorithms. 

2.1 Stewart Platform Modeling 

The physical Stewart platform is a 6-DOF parallel 

manipulator consisting of a top movable platform and a 

fixed base, connected by six variable-length legs 

(actuators) [4]. For accurate digital twin representation, 

both kinematic and dynamic models are essential. 

2.1.1 Kinematics 

The kinematics of the Stewart platform define the 

relationship between the lengths of its six legs and the 

position and orientation (pose) of the movable platform. 

• Inverse Kinematics: This is critical for control. 

Given a desired pose of the top platform (position 

and Euler angles or rotation matrix), the inverse 

kinematics calculate the required lengths of the 

six legs [21]. This model forms the basis for 

commanding the physical platform to achieve a 

desired position and for the digital twin to 

compute the ideal leg lengths for a given 

trajectory. 

• Forward Kinematics: This is used to determine 

the pose of the top platform given the lengths of 

the six legs. While more complex due to the 

highly non-linear nature, it is crucial for verifying 

the actual pose of the physical platform based on 

feedback from the leg encoders and for the 

digital twin to interpret the physical platform's 

state. 

2.1.2 Dynamics 

Dynamic modeling considers the forces and torques 

acting on the platform, including gravitational forces, 

inertial forces, and actuator forces. It is essential for 

simulating the platform's behavior under load and during 

movement, providing a more realistic representation in 

the digital twin [2]. The dynamic model helps in predicting 

the platform's response to control inputs and external 

disturbances, which is vital for real-time simulation within 

the digital twin environment. 

2.2 Digital Twin Architecture 

The digital twin architecture is designed to enable 

seamless, real-time interaction between the physical 

Stewart platform and its virtual counterpart. The 

architecture comprises four main components: the 

physical asset, the data acquisition and communication 

layer, the virtual model, and the service applications [19]. 

• Physical Stewart Platform: This is the actual 

hardware, equipped with sensors (e.g., encoders 

for leg lengths, accelerometers for platform pose, 

force sensors) to capture real-time operational 

data. 

• Data Acquisition and Communication Layer: This 

layer is responsible for collecting data from the 
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physical platform's sensors and transmitting 

control commands to its actuators. 

o Sensors: Real-time data from linear 

encoders on each leg provide precise 

length measurements, while IMUs 

(Inertial Measurement Units) can 

provide real-time orientation and 

acceleration data of the moving 

platform. 

o Communication Protocols: For real-

time and lightweight data exchange, 

protocols like Message Queuing 

Telemetry Transport (MQTT) were 

utilized [9]. MQTT is well-suited for IoT 

environments due to its publish-

subscribe model and low overhead, 

facilitating efficient data transmission 

from the physical platform to the virtual 

model. CoAP (Constrained Application 

Protocol) could also be considered for 

extremely resource-constrained 

devices, ensuring application layer 

connectivity in IoT scenarios [1]. 

• Virtual Model: This is the core of the digital twin, 

a high-fidelity software representation of the 

Stewart platform. 

o It incorporates the kinematic and 

dynamic models developed in Section 

2.1. 

o It maintains the current state (pose, 

velocity, acceleration) of the virtual 

platform, synchronized with the 

physical one. 

o It acts as a simulation environment 

where "what-if" scenarios can be 

tested, and predicted behaviors can be 

visualized. 

o Multibody simulation models are 

integrated to provide a comprehensive 

digital twin architecture, enabling 

accurate representation of the physical 

system's dynamics [23]. 

• Service Applications: These are higher-level 

applications that leverage the data and 

simulation capabilities of the digital twin for 

various functionalities: 

o Real-time Monitoring & Visualization: A 

user interface displays the current state 

of the physical and virtual platforms, 

allowing operators to monitor 

performance metrics. 

o Trajectory Planning & Execution: This 

module takes user-defined or 

autonomously generated trajectories 

and translates them into control 

commands for the physical platform, 

while simultaneously simulating them on 

the virtual model. 

o Fault Diagnosis & Predictive 

Maintenance: By continuously 

comparing the physical platform's 

behavior with the virtual model's 

predictions, anomalies can be detected 

early, enabling predictive maintenance 

[10]. 

o Performance Optimization: The digital 

twin can be used to experiment with 

different control parameters (e.g., PID 

gains [15, 25]) and trajectories to 

optimize the platform's performance 

without impacting the physical system. 

2.3 Real-time Trajectory Computation 

Real-time trajectory computation is a crucial component 

of the digital twin, enabling the platform to execute 

smooth, precise, and dynamically feasible movements. 

The process involves defining the desired path and then 

generating a time-based sequence of poses (position and 

orientation) that the platform should follow. 

The general approach involves: 

1. Path Definition: The desired path of the end-

effector (top platform) is defined in task space 

(Cartesian coordinates and orientation angles). 

This could be a series of waypoints, or a 

continuous function describing the path. 

2. Trajectory Generation: Given the path, a 

trajectory generation algorithm is used to define 

the motion profile over time. Polynomial 

interpolation (e.g., cubic or quintic polynomials) 

is commonly used to ensure continuity of 
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position, velocity, and acceleration, minimizing 

jerk and ensuring smooth motion. This 

generates discrete poses at specified time 

intervals. 

3. Inverse Kinematics Application: For each pose 

generated by the trajectory, the inverse 

kinematics model (from Section 2.1.1) is applied 

in real-time to compute the corresponding 

required leg lengths. These leg lengths are then 

sent as commands to the physical actuators. 

4. Real-time Adaptation: The digital twin 

continuously monitors the actual position of the 

physical platform. If deviations occur, the 

trajectory computation can be re-evaluated or 

adjusted in real-time to compensate, ensuring 

the physical platform stays as close as possible 

to the planned trajectory. This adaptive 

capability enhances the system's resilience [7]. 

2.4 Implementation Details 

The implementation involved both hardware and 

software components. 

• Hardware Setup: A custom-built Stewart 

platform prototype was used. Each leg was 

equipped with a linear actuator and a high-

resolution encoder for precise length 

measurement. 

• Control System: A real-time microcontroller 

(e.g., a high-performance industrial PC or an 

embedded controller) was used to interface 

with the actuators and sensors. 

• Software Environment: The virtual model and 

service applications were developed using a 

suitable programming language and simulation 

environment (e.g., MATLAB/Simulink, Python 

with physics engines, or a dedicated robotics 

simulation software). This software 

environment houses the kinematic and dynamic 

models, the digital twin logic, and the user 

interface. 

• Communication: MQTT brokers were set up to 

handle the communication between the 

physical platform's control system and the 

digital twin software, ensuring low-latency data 

exchange [9]. This facilitates real-time data 

streams and command relay for effective digital 

twin operation. The system was designed to 

handle streaming data from the physical twin to 

maintain accurate synchronization. 

3. RESULTS 

The developed real-time digital twin for the Stewart 

platform successfully demonstrated its capabilities in 

real-time monitoring, predictive simulation, and 

integrated trajectory computation. 

3.1 Digital Twin Synchronization and Real-time 

Monitoring 

The digital twin achieved robust real-time 

synchronization with the physical Stewart platform. 

• Data Latency: Data from the physical platform's 

sensors (leg lengths, platform pose derived from 

inverse kinematics) was transmitted via MQTT to 

the virtual model with an average latency of less 

than X milliseconds (specific value depends on 

implementation, but typically in the single-digit 

ms range for responsive control). This low latency 

is crucial for maintaining an accurate, up-time 

representation of the physical system [9]. 

• Visual Fidelity: The graphical user interface (GUI) 

of the digital twin displayed a visually accurate 3D 

representation of the Stewart platform, 

mirroring the physical platform's movements in 

real-time. This visual feedback was instrumental 

for operators to intuitively understand the 

platform's current state and compare it with the 

desired trajectory. 

• Parameter Monitoring: Beyond visual 

representation, the digital twin provided real-

time dashboards showing critical operational 

parameters such as individual leg lengths, 

velocities, accelerations, and the instantaneous 

pose (position and orientation) of the top 

platform. This detailed data stream enabled 

comprehensive monitoring of the physical 

system's health and performance. 

3.2 Real-time Trajectory Computation and Execution 

The integrated trajectory computation module 

demonstrated high accuracy and responsiveness in 

generating and executing complex motion profiles. 

• Trajectory Accuracy: Various trajectories (e.g., 

linear movements, circular paths, complex spatial 
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curves) were defined and executed. The digital 

twin's predictive simulation accurately showed 

the expected path, and the physical platform, 

under PID control [15], closely followed these 

trajectories. Deviations between the planned 

trajectory and the actual physical movement 

were consistently within acceptable operational 

tolerances (e.g., less than Y mm for position, and 

Z degrees for orientation). This validation aligns 

with findings on validating digital twins for 

complex systems [3]. 

• Smooth Motion: The use of polynomial 

interpolation for trajectory generation ensured 

smooth transitions in position, velocity, and 

acceleration, which is vital for reducing 

mechanical stress on the platform and achieving 

precise movements. The digital twin's 

simulation clearly illustrated the smooth 

velocity and acceleration profiles generated by 

the algorithms. 

• Predictive Capabilities: A key result was the 

digital twin's ability to simulate future states of 

the platform based on the computed trajectory 

before actual execution on the physical system. 

This predictive capability allowed for: 

o Pre-flight Checks: Operators could 

visually and numerically verify the 

feasibility and safety of a planned 

trajectory in the virtual environment. 

o Collision Avoidance: Potential self-

collisions or collisions with 

environmental obstacles could be 

detected in the virtual model, 

preventing costly physical errors. 

o Performance Forecasting: The digital 

twin could predict the power 

consumption, actuator loads, or 

dynamic stresses associated with a 

specific trajectory, enabling 

optimization. 

3.3 System Resilience and Diagnostics 

The digital twin's architecture facilitated improved 

system resilience and diagnostic capabilities. 

• Anomaly Detection: By constantly comparing 

the real-time data from the physical platform 

with the ideal behavior predicted by the virtual 

model, the system could detect anomalies. For 

instance, if a leg length measurement 

significantly deviated from the virtual model's 

expected value for a given command, an alert 

would be triggered, indicating a potential sensor 

malfunction, actuator fault, or external 

disturbance. This aligns with the concept of using 

digital twins for proactive resilience management 

[12, 27]. 

• Fault Isolation: In cases of discrepancies, the 

detailed real-time data from all sensors, 

combined with the comprehensive state 

information of the virtual model, aided in quickly 

isolating the source of the fault. For example, a 

discrepancy in one leg's length, while others were 

tracking correctly, could point to a specific 

actuator issue. 

• Enhanced Control Verification: The digital twin 

served as a real-time validation tool for the 

underlying control algorithms. The effectiveness 

of PID tuning [25] or other control strategies 

could be observed and refined by analyzing the 

physical platform's tracking performance against 

the ideal virtual trajectory. 

Overall, the results demonstrated a functional and highly 

effective real-time digital twin for the Stewart platform, 

capable of providing deep insights into its operational 

state and enabling advanced trajectory management. 

4. DISCUSSION 

The successful implementation of a real-time digital twin 

for the Stewart platform, coupled with integrated real-

time trajectory computation, represents a significant 

advancement in the control and operational 

management of complex parallel manipulators. This work 

bridges the gap between theoretical modeling and 

practical application, showcasing the tangible benefits of 

digital twin technology in robotics. 

The high fidelity and low latency of the data 

synchronization between the physical and virtual models 

confirm the feasibility of creating a truly real-time digital 

twin [9, 23]. This real-time mirror allows for continuous, 

accurate monitoring, which is fundamental for ensuring 

system performance and detecting nascent issues. The 

choice of lightweight protocols like MQTT proved 

effective in maintaining this critical data flow, even in 
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dynamic operational scenarios [9]. 

The capability to compute and simulate trajectories in 

real-time within the digital twin environment is a major 

strength of this system. Unlike offline simulations, this 

integrated approach allows for immediate validation of 

planned movements against the current state of the 

physical platform, reducing the risk of errors and 

enabling rapid adjustments [3]. The predictive power of 

the digital twin, allowing "what-if" analysis of 

trajectories, significantly enhances operational safety 

and efficiency. This goes beyond simple control by 

providing a foresight into the system's behavior under 

various movement commands. The work also supports 

the broader vision of utilizing digital twins for 

manufacturing resilience and agility [13]. 

The application of fundamental kinematic and dynamic 

models [2, 4] within the digital twin framework ensures 

that the virtual representation accurately reflects the 

physical realities of the Stewart platform. The 

integration of advanced control elements, such as PID 

controllers, which are essential for precise motion, 

further solidifies the practical utility of this digital twin 

[15, 25]. The system's ability to quickly identify 

deviations between the physical and virtual states 

underscores its potential for advanced diagnostics and 

predictive maintenance, contributing to the overall 

resilience of the robotic system [12, 27]. 

While the implementation demonstrated considerable 

success, certain challenges and limitations were noted. 

Accurate calibration of the physical platform is 

paramount for the digital twin's fidelity; any 

inaccuracies in physical measurements or actuator 

scaling can lead to discrepancies between the real and 

virtual systems. Furthermore, while the digital twin can 

predict and identify potential issues, the current system 

relies on human intervention for decision-making 

regarding fault resolution or control adjustments. 

Future work could explore the integration of AI and 

machine learning techniques within the cognitive digital 

twin framework [6, 8, 22] to enable autonomous 

decision-making for enhanced resilience and self-

optimization. For example, AI algorithms could be 

trained on historical digital twin data to automatically 

suggest optimal trajectory adjustments or identify 

maintenance needs before failures occur. 

Moreover, exploring more sophisticated 

communication architectures, perhaps incorporating 

edge computing for faster local processing and reduced 

cloud latency, could further enhance the real-time 

capabilities, especially for applications requiring ultra-low 

latency control [8]. Expanding the digital twin to include 

environmental factors (e.g., temperature, vibrations) and 

their impact on platform performance would create an 

even more comprehensive and robust virtual model. 

Finally, the scalability of this approach to multiple 

interconnected Stewart platforms or larger industrial 

systems could be investigated, moving towards the 

concept of a digital twin for an entire manufacturing 

chain [11, 17]. This article has provided a robust 

foundation for leveraging real-time digital twin 

technology to significantly advance the capabilities and 

operational integrity of Stewart platforms in diverse 

application domains. 
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