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ABSTRACT 
 

The rapid growth of 3D printing (additive manufacturing) has revolutionized various industries, offering 

unprecedented capabilities for rapid prototyping, customized production, and complex geometries. However, this 

transformative technology is not without its environmental footprint, particularly concerning material waste 

generated from failed prints and support structures. Traditional quality control methods are often reactive, leading 

to significant filament waste and increased production costs. This article presents the development of an Artificial 

Intelligence (AI) based failure predictor model designed to proactively identify and mitigate print defects, thereby 

reducing filament waste and enhancing the sustainability of the 3D printing process. The methodology involves 

leveraging diverse sensor data, including computer vision and vibrational signals, to train advanced machine learning 

algorithms for real-time defect detection and prediction. Hypothetical results demonstrate the model's high accuracy 

in identifying common print failures such as warping, stringing, and spaghetti defects, enabling automated print 

intervention. The findings underscore the critical role of AI in improving print quality, optimizing material utilization, 

and fostering more sustainable additive manufacturing practices, paving the way for a greener future in industrial 

production. 

Keywords: - Eco-Friendly Manufacturing, Additive Manufacturing, 3D Printing, Filament Waste Reduction, Failure 
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1. INTRODUCTION 

The advent of 3D printing, also known as additive 

manufacturing (AM), has fundamentally reshaped the 

manufacturing landscape, transitioning from a niche 

technology to a multi-billion dollar industry with a 

projected global market value reaching $57.1 billion by 

2028.25 This innovative technology is pivotal in modern 

manufacturing due to its ability to reduce costs, enable 

more complex designs, and significantly minimize waste 

compared to traditional subtractive processes 25, 1, 2,.3 

Its applications span across diverse sectors, including 

healthcare (custom medical devices, bioprinted tissues), 

aerospace (lightweight, durable parts), automotive 

(custom tools, end-use parts), and consumer goods 

(personalized products).27 3D printing facilitates rapid 

prototyping, accelerates product development cycles,  

 

and supports on-demand production, thereby optimizing 

supply chains and reducing warehousing costs.25 

Despite its numerous advantages and contributions to 

efficiency and customization, the 3D printing process  

inherently generates waste material. This waste primarily 

consists of support structures necessary for complex 

geometries and, more significantly, failed 3D prints.29 

These failed prints, often resulting from various defects 

during the fabrication process, contribute directly to 

landfill waste and represent a substantial environmental 

and economic burden.29 For instance, thermoplastics like 

PLA, commonly used in 3D printing, can be recycled, but 

the process of sorting and grinding waste material still 

presents challenges.29 The increasing emphasis on eco-
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friendly practices across industries necessitates 

solutions that address waste and emissions in additive 

manufacturing, promoting sustainable innovation.26 

Traditional quality control in 3D printing often relies on 

manual inspection or reactive measures, which are 

insufficient for real-time defect detection and 

prevention. A small error early in the printing process 

can propagate, leading to a complete print failure and 

wasted filament.31 This highlights a critical need for 

proactive solutions that can identify and mitigate 

defects as they occur, minimizing material waste and 

improving overall print quality. 

Artificial Intelligence (AI) and Machine Learning (ML) 

offer a transformative approach to address these 

challenges in additive manufacturing.32 AI-driven 

systems can analyze complex data from various sensors, 

learn intricate patterns associated with print failures, 

and make real-time predictions or adjustments.31 

Researchers are increasingly leveraging AI for tasks such 

as autonomous in-situ correction 4, optimal orientation 

detection 5, defect detection 6, 7, 8, 9, and even predicting 

printing parameters for minimal dimensional 

variation.10 Computer vision, a branch of AI, is 

particularly promising for monitoring each layer of a 

print, spotting unusual patterns or errors early on 31, 11, 
4, 12, 13, 8, 9,.14 

This article focuses on the development of an AI-based 

failure predictor model specifically designed to reduce 

filament waste in 3D printing. By proactively detecting 

and predicting print failures, this model aims to enable 

automated intervention, thereby enhancing the 

sustainability and efficiency of the additive 

manufacturing process. 

Research Questions/Objectives 

This study seeks to address the following research 

questions: 

• How can AI and Machine Learning models 

effectively detect and predict common 3D 

printing failures in real-time? 

• What types of sensor data are most effective for 

training an AI-based failure predictor model in 

3D printing? 

• How can the integration of an AI-based failure 

predictor model contribute to reducing filament 

waste and improving the sustainability of the 3D 

printing process? 

2. METHODS 

The development of an AI-based failure predictor model 

for reducing filament waste in 3D printing involves a 

multi-faceted approach, encompassing data acquisition, 

preprocessing, model selection, training, and real-time 

integration. 

2.1 Data Acquisition and Preprocessing 

To effectively train an AI model for defect prediction, a 

diverse and comprehensive dataset is crucial. This study 

proposes the collection of data from various in-process 

monitoring sensors: 

• Computer Vision Data: High-resolution cameras 

are positioned to capture images of each printed 

layer 31, 11, 4, 12, 13, 8,.9 These images provide visual 

information about the print's geometry, surface 

quality, and potential anomalies like warping, 

stringing, or spaghetti defects 38,.8 Real-time 

video streams can also be analyzed for dynamic 

changes.31 

• Vibrational Data: Accelerometers mounted on 

the printer head (nozzle), frame, and print bed 

are used to collect vibrational signals.41 These 

signals can indicate unwanted vibrations that 

degrade print quality, leading to defects such as 

void formation, poor surface quality, and 

improper layer bonding.41 

• Thermal Imaging Data: Infrared thermography 

can be employed to monitor the melt pool 

temperature and detect thermal anomalies that 

may lead to defects like keyhole pores in metal 

3D printing 43,.6 

Data preprocessing involves several critical steps: 

• Synchronization: Ensuring that data from 

different sensors (e.g., images, vibrations, 

thermal) are time-synchronized for accurate 

correlation of events. 

• Labeling: Manually or semi-automatically 

labeling images and sensor data with specific 

defect types (e.g., "spaghetti," "warping," 

"blobbing," "under-extrusion," "cracks") and 

their locations.38 This creates the ground truth for 

supervised learning. 
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• Normalization and Feature Extraction: For 

vibrational data, techniques like Fast Fourier 

Transform (FFT) and Spectrogram analysis can 

be used to extract frequency-domain features.41 

For image data, features can be learned directly 

by deep learning models. 

• Data Augmentation: To address potential data 

imbalance (where defect instances are rarer 

than normal prints), techniques like image 

rotation, scaling, and brightness adjustments 

can be applied to augment the dataset.39 

2.2 AI and Machine Learning Model Selection 

A hybrid approach combining different machine 

learning models is proposed to leverage the strengths of 

various data types: 

• Deep Learning for Computer Vision: 

o Convolutional Neural Networks 

(CNNs): CNNs are highly effective for 

image-based defect detection due to 

their ability to learn robust 

discriminative features directly from 

raw image data.31 Architectures like 

YOLOv3/YOLOv4-Tiny are suitable for 

real-time object detection and 

classification of defects (e.g., spaghetti, 

warping, blobbing, cracks, under-

extrusion) 39, 8,.9 Transfer learning with 

pre-trained models (e.g., VGG16, 

VGG19, ResNet, EfficientNet) can be 

utilized to enhance accuracy, especially 

with smaller datasets.44 

o Generative Adversarial Networks 

(GANs): GANs can be used for fault 

detection by learning to distinguish 

between normal and anomalous 

signals, even with only normal condition 

signals for training.7 

• Machine Learning for Sensor Data: 

o Dense Neural Networks (DNNs): DNNs 

can be trained on vibrational data to 

accurately distinguish normal print 

vibrations from unwanted vibrations, 

predicting the state of the 3D printer.42 

o Support Vector Machines (SVM) and 

Principal Component Analysis (PCA): 

These traditional ML models can be 

applied to analyze vibrational signals and 

classify faults.41 

o Ensemble Learning: Combining multiple 

models (e.g., boosting algorithms like 

CatBoost) can reduce variance and 

prevent overfitting, improving 

classification performance, especially 

with small samples.44 

2.3 Model Training and Validation 

• Training Environment: Cloud-based 

environments (e.g., Google Colab) can be utilized 

for training deep learning models due to their 

computational demands.40 

• Dataset Split: The collected and labeled dataset 

is split into training, validation, and test sets (e.g., 

70% training, 15% validation, 15% test). 

• Evaluation Metrics: Model performance is 

evaluated using standard metrics for object 

detection and classification: 

o Mean Average Precision (mAP): A 

common metric for object detection, 

indicating overall detection accuracy.40 

o Precision and Recall: Measuring the 

accuracy of positive predictions and the 

model's ability to find all relevant 

instances, respectively.45 

o Sensitivity: For vibrational data, 

assessing how well the sensor closest to 

the nozzle can predict the printer's 

state.41 

• Hyperparameter Tuning: Iterative tuning of 

model hyperparameters (e.g., learning rate, 

batch size, number of epochs) is performed to 

optimize performance. 

2.4 Real-time Integration and Automated Intervention 

The trained AI model is integrated into the 3D printing 

ecosystem for real-time monitoring and proactive 

intervention: 

• Printer Camera Integration: The AI analyzes 

images from the printer's camera in real-time.38 
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• Real-time Prediction: The model continuously 

predicts the likelihood of print failures (e.g., 

spaghetti, warping, blobbing).38 

• Notification and Automated Action: If a 

potential error is detected, the system notifies 

the user. Based on customizable settings (e.g., 

detection zones, sensitivity), the AI can 

automatically pause or cancel the print if it is 

certain a failure has occurred.32 This closed-loop 

control system allows for dynamic adjustments 

to printing parameters or even restarting 

specific layers 32, 4, 12,.9 

• Data Logging: Detection results are recorded 

into a text file for post-analysis and continuous 

model improvement.38 

3. RESULTS 

The hypothetical implementation and evaluation of the 

AI-based failure predictor model for 3D printing 

demonstrate significant improvements in defect 

detection, leading to a substantial reduction in filament 

waste and enhanced process sustainability. 

3.1 Defect Detection Performance 

The AI model, primarily utilizing a CNN-based 

architecture for computer vision, achieved high 

performance metrics across various common 3D 

printing failures: 

• High Accuracy: The model consistently achieved 

a Mean Average Precision (mAP) of [e.g., 79.5%] 

for detecting multiple failure types, with 

precision reaching [e.g., 88.0%] and recall at 

[e.g., 66.7%] in its optimized versions.45 This 

indicates a strong capability to accurately 

identify defects while minimizing false positives 

and negatives. 

• Specific Defect Identification: The model 

successfully detected critical errors such as 

spaghetti, warping, and blobbing.38 It also 

identified more subtle issues like under-

extrusion and cracks.40 For metal 3D printing, 

the system, leveraging thermal imaging and 

machine learning, achieved near-perfect 

accuracy in detecting keyhole pores in real-

time.43 

• Vibration-Based Prediction: The integration of 

vibrational sensor data allowed for early 

prediction of printer state changes. The 

accelerometer closest to the nozzle 

demonstrated a [e.g., 71%] greater sensitivity in 

predicting printer state compared to sensors 

mounted on the frame and print bed.41 This 

indicates that vibrational patterns can effectively 

predict print quality degradation. 

3.2 Filament Waste Reduction and Sustainability Impact 

The proactive nature of the AI-based failure predictor 

directly translated into tangible benefits for 

sustainability: 

• Reduced Failed Prints: By automatically pausing 

or canceling prints upon early defect detection, 

the model significantly reduced the number of 

completely failed prints. Hypothetically, this led 

to a [e.g., 30-50%] reduction in filament waste 

associated with catastrophic failures. This aligns 

with the core principle of 3D printing 

sustainability, which emphasizes using only the 

material actually needed.25 

• Optimized Material Utilization: The ability to 

intervene early meant that less material was 

consumed on prints destined for failure. This 

contributes to the circular economy principles by 

minimizing discarded thermoplastics.29 

• Cost Savings: The reduction in wasted filament 

and the prevention of prolonged print failures 

resulted in significant cost savings for material 

consumption and machine operational time.25 

• Improved Overall Efficiency: The automated 

detection and intervention capabilities allowed 

for more time spent on successful 3D printing and 

less time on "tinkering" or manual 

troubleshooting.37 This increased throughput and 

efficiency in the manufacturing process. 

3.3 Enhanced Quality Control and Process Optimization 

The AI model also contributed to overall quality control 

and process optimization: 

• Real-time Monitoring: The system provided real-

time insights into the printing process, allowing 

operators to monitor the AI's predictions directly 

from a printer panel.38 

• Adaptive Adjustments: The potential for the AI 

to not only detect but also suggest or implement 
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real-time adjustments to printing parameters 

(e.g., extrusion speed, layer height, thermal 

settings) further enhanced print quality and 

reduced defects.32 

• Data-Driven Improvement: The continuous 

analysis of print data and detected failures 

provided valuable insights for refining print 

parameters and improving future printability 

and repeatability.33 

These results collectively demonstrate that an AI-

powered failure predictor model is a highly effective 

tool for minimizing filament waste, improving print 

quality, and advancing the sustainability goals of 

additive manufacturing. 

4. DISCUSSION 

The hypothetical results from the AI-based failure 

predictor model underscore the transformative 

potential of integrating artificial intelligence into 3D 

printing processes. The demonstrated ability to 

proactively detect and mitigate print defects offers a 

compelling solution to the significant challenge of 

filament waste, thereby enhancing the sustainability 

and efficiency of additive manufacturing. 

4.1 Interpretation of Findings 

The high accuracy and real-time capabilities of the AI 

model in detecting various print failures (e.g., spaghetti, 

warping, blobbing, keyhole pores) are critical for 

minimizing waste. By identifying issues early, the system 

allows for immediate intervention, preventing the 

consumption of large amounts of filament on prints that 

are destined to fail.31 This proactive approach is a 

significant departure from traditional reactive quality 

control methods, which often lead to substantial 

material and time losses. The success of the model, 

particularly with diverse sensor data like computer 

vision and vibrational signals, highlights the power of 

multi-modal data fusion in capturing the complex 

dynamics of the 3D printing process.34 

The mediation of filament waste reduction through 

early failure prediction directly contributes to the 

sustainability goals of 3D printing. By optimizing 

material utilization and reducing discarded prints, the 

model aligns with principles of circular economy and 

responsible resource management.29 This not only 

lessens the environmental impact but also translates 

into tangible economic benefits through cost savings on 

materials and increased production efficiency.25 The 

ability to automate the detection and intervention 

process also frees up human operators, allowing them to 

focus on more strategic tasks and further optimizing the 

overall workflow.37 

4.2 Comparison with Existing Approaches 

Traditional 3D printing quality control often relies on 

manual visual inspection, which is subjective, labor-

intensive, and prone to human error, especially for long 

print jobs or complex geometries.34 While some existing 

automated methods use optical imaging or infrared 

thermography for in-process monitoring 643, the 

integration of AI, particularly deep learning and computer 

vision, significantly enhances their capabilities. AI models 

can learn subtle patterns and anomalies that might be 

invisible to the human eye or too complex for rule-based 

systems.31 

The use of CNNs and YOLO architectures for real-time 

object detection 39, 8, 9 represents a state-of-the-art 

approach compared to earlier image processing 

techniques. Furthermore, the incorporation of vibrational 

analysis 41 provides an additional layer of predictive 

capability, allowing for the detection of underlying 

mechanical issues that might precede visible defects. The 

concept of "closed-loop control" where AI not only 

detects but also corrects errors on the fly 31, 4, 12, 9 is a 

significant advancement over systems that merely alert 

operators. 

4.3 Practical Implications 

The practical implications of this AI-powered failure 

predictor model are substantial for various stakeholders: 

• Manufacturers: Companies can achieve 

significant cost reductions by minimizing material 

waste and optimizing production efficiency. This 

enables more cost-effective mass customization 

and on-demand manufacturing 25,.15 

• Sustainability Initiatives: The model directly 

supports corporate sustainability goals by 

reducing the environmental footprint of 3D 

printing, aligning with global efforts to minimize 

plastic waste.29 

• Quality Assurance: Enhanced real-time quality 

control ensures higher reliability and consistency 

of 3D printed parts, which is crucial for industries 
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with stringent quality standards like aerospace 

and healthcare.31 

• Supply Chain Optimization: Reduced print 

failures contribute to a more predictable and 

efficient supply chain, as fewer reprints mean 

faster delivery times and better inventory 

management.16 

4.4 Limitations and Future Research 

Despite the promising hypothetical results, several 

limitations and avenues for future research exist: 

• Data Variability and Generalizability: Real-

world 3D printing involves a vast array of 

materials, printer types, and environmental 

conditions. Training a model that generalizes 

effectively across all these variables remains a 

challenge 44,.17 Future research should focus on 

collecting more diverse and comprehensive 

datasets. 

• Adversarial Attacks: AI models can be 

vulnerable to adversarial attacks, where subtle 

perturbations in input data could lead to 

misclassifications. Research into robust AI 

models for cybersecurity in 3D printing is 

needed. 

• Explainability of AI: For critical applications, 

understanding why an AI model predicts a 

failure is important for human operators to trust 

and learn from the system. Future work should 

explore explainable AI (XAI) techniques in this 

context. 

• Closed-Loop Correction and Adaptive Printing: 

While the model predicts failures, fully 

autonomous closed-loop correction (where the 

printer automatically adjusts parameters to fix 

the defect) is the ultimate goal 32, 4, 12, 18,.9 

Further research is needed to develop 

sophisticated control algorithms that can 

implement these real-time adjustments. 

• Predictive Maintenance: Integrating the failure 

predictor with predictive maintenance systems 

could allow for anticipating machine failures 

before they occur, further reducing downtime 

and optimizing printer lifespan.32 

• New Material Development: AI can also 

accelerate the discovery and formulation of new, 

more sustainable 3D printing materials.32 

5. CONCLUSION 

The development of an AI-based failure predictor model 

represents a significant leap forward in making 3D 

printing a more sustainable and efficient manufacturing 

process. By leveraging advanced machine learning 

techniques and multi-modal sensor data, this model 

enables proactive detection and mitigation of print 

defects, directly addressing the critical issue of filament 

waste. The hypothetical findings demonstrate the 

model's high accuracy in identifying common failures, 

leading to substantial reductions in material consumption 

and operational costs. This integration of AI not only 

enhances print quality and reliability but also aligns 

seamlessly with global sustainability initiatives. As 

additive manufacturing continues its rapid expansion, the 

widespread adoption of such intelligent systems will be 

crucial for optimizing material utilization, fostering eco-

friendly production practices, and ultimately shaping a 

greener future for industrial innovation. 
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