A Compact Example-Driven Procedural Model for Efficient Glint Appearance Synthesis in Real-Time

Authors

  • Dr. Nathaniel R. Beckett Department of Computer Science, University of California, San Diego, CA, USA

Keywords:

Glint appearance, procedural shading, real-time rendering, microfacet modeling

Abstract

The realistic rendering of highly detailed and complex surface appearances, particularly those exhibiting intricate specular highlights known as glints, poses significant challenges for real-time graphics. Traditional Bidirectional Reflectance Distribution Functions (BRDFs) often fall short in capturing the fine-scale microgeometry responsible for these effects. This paper presents a novel, compact example-driven procedural model designed to generate and render glinty appearances efficiently in real-time. By leveraging a concise set of pre-computed or pre-analyzed examples, our procedural framework synthesizes plausible micro-surface details on-the-fly, enabling dynamic and visually compelling glint patterns without requiring extensive storage or complex pre-filtering. We demonstrate that this approach offers a compelling balance between visual fidelity, computational efficiency, and memory footprint, making it suitable for interactive applications and games.

References

Yan L Q, Hašan M, Marschner S, Ramamoorthi R. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graphics, 2016, 35 (4): Article No. 56. DOI: https://doi.org/10.1145/2897824.2925915.

Zhu J Q, Xu Y N, Wang L. A stationary SVBRDF material modeling method based on discrete microsurface. Computer Graphics Forum, 2019, 38(7): 745–754. DOI: https://doi.org/10.1111/cgf.13876.

Wang B B, Hašan M, Holzschuch N, Yan L Q. Example-based microstructure rendering with constant storage. ACM Trans. Graphics, 2020, 39 (5): Article No. 162. DOI: https://doi.org/10.1145/3406836.

Tan H W, Zhu J Q, Xu Y N, Meng X X, Wang L, Yan L Q. Real-time microstructure rendering with MIP-mapped normal map samples. Computer Graphics Forum, 2022, 41(1): 495–506. DOI: https://doi.org/10.1111/cgf.14448.

Yan L Q, Hašan M, Jakob W, Lawrence J, Marschner S, Ramamoorthi R. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graphics, 2014, 33(4): 116. DOI: https://doi.org/10.1145/2601097.2601155.

Chermain X, Claux F, Mérillou S. Glint rendering based on a multiple-scattering patch BRDF. Computer Graphics Forum, 2019, 38(4): 27–37. DOI: https://doi.org/10.1111/cgf.13767.

Yan L Q, Hašan M, Walter B, Marschner S, Ramamoorthi R. Rendering specular microgeometry with wave optics. ACM Trans. Graphics, 2018, 37(4): 75. DOI: https://doi.org/10.1145/3197517.3201351.

Guo J, Chen Y J, Guo Y W, Pan J G. A physically-based appearance model for special effect pigments. Computer Graphics Forum, 2018, 37(4): 67–76. DOI: https://doi.org/10.1111/cgf.13476.

Xia M Q, Walter B, Hery C, Maury O, Michielssen E, Marschner S. A practical wave optics reflection model for hair and fur. ACM Trans. Graphics, 2023, 42 (4): Article No. 39. DOI: https://doi.org/10.1145/3592446.

Yu Y C, Xia M Q, Walter B, Michielssen E, Marschner S. A full-wave reference simulator for computing surface reflectance. ACM Trans. Graphics, 2023, 42(4): 109. DOI: https://doi.org/10.1145/3592414.

Zhu J Q, Zhao S Z, Xu Y N, Meng X X, Wang L, Yan L Q. Recent advances in glinty appearance rendering. Computational Visual Media, 2022, 8(4): 535–552. DOI: https://doi.org/10.1007/s41095-022-0280-x.

Gamboa L E, Guertin J P, Nowrouzezahrai D. Scalable appearance filtering for complex lighting effects. ACM Trans. Graphics, 2018, 37 (6): Article No. 277. DOI: https://doi.org/10.1145/3272127.3275058.

Atanasov A, Wilkie A, Koylazov V, Křivánek J. A multi-scale microfacet model based on inverse bin mapping. Computer Graphics Forum, 2021, 40(2): 103–113. DOI: https://doi.org/10.1111/cgf.142618.

Fan J H, Wang B B, Wu W S, Hašan M, Yang J, Yan L Q. Efficient specular glints rendering with differentiable regularization. IEEE Trans. Visualization and Computer Graphics, 2023, 29(6): 2940–2949. DOI: https://doi.org/10.1109/TVCG.2022.3144479.

Jakob W, Hašan M, Yan L Q, Lawrence J, Ramamoorthi R, Marschner S. Discrete stochastic microfacet models. ACM Trans. Graphics, 2014, 33 (4): Article No. 115. DOI: https://doi.org/10.1145/2601097.2601186.

Atanasov A, Koylazov V. A practical stochastic algorithm for rendering mirror-like flakes. In Proc. the 2016 ACM SIGGRAPH Talks, Jul. 2016, Article No. 67. DOI: https://doi.org/10.1145/2897839.2927391.

Wang B B, Wang L, Holzschuch N. Fast global illumination with discrete stochastic microfacets using a filterable model. Computer Graphics Forum, 2018, 37(7): 55–64. DOI: https://doi.org/10.1111/cgf.13547.

Raymond B, Guennebaud G, Barla P. Multi-scale rendering of scratched materials using a structured SV-BRDF model. ACM Trans. Graphics, 2016, 35 (4): Article No. 57. DOI: https://doi.org/10.1145/2897824.2925945.

Werner S, Velinov Z, Jakob W, Hullin M B. Scratch iridescence: Wave-optical rendering of diffractive surface structure. ACM Trans. Graphics, 2017, 36 (6): Article No. 207. DOI: https://doi.org/10.1145/3130800.3130840.

Deng H, Liu Y, Wang B B, Yang J, Ma L, Holzschuch N, Yan L Q. Constant-cost spatio-angular prefiltering of glinty appearance using tensor decomposition. ACM Trans. Graphics, 2022, 41 (2): Article No. 22. DOI: https://doi.org/10.1145/3507915.

Kuznetsov A, Hašan M, Xu Z X, Yan L Q, Walter B, Kalantari N K, Marschner S, Ramamoorthi R. Learning generative models for rendering specular microgeometry. ACM Trans. Graphics, 2019, 38 (6): Article No. 225. DOI: https://doi.org/10.1145/3355089.3356525.

Guo Y, Hašan M, Yan L, Zhao S. A Bayesian inference framework for procedural material parameter estimation. Computer Graphics Forum, 2020, 39(7): 255–266. DOI: https://doi.org/10.1111/cgf.14142.

Zirr T, Kaplanyan A S. Real-time rendering of procedural multiscale materials. In Proc. the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Feb. 2016, pp.139–148. DOI: https://doi.org/10.1145/2856400.2856409.

Deliot T, Belcour L. Real-time rendering of glinty appearances using distributed binomial laws on anisotropic grids. Computer Graphics Forum, 2023, 42(8): e14866. DOI: https://doi.org/10.1111/cgf.14866.

Chermain X, Sauvage B, Dischler J M, Dachsbacher C. Procedural physically based BRDF for real-time rendering of glints. Computer Graphics Forum, 2020, 39(7): 243–253. DOI: https://doi.org/10.1111/cgf.14141.

Chermain X, Lucas S, Sauvage B, Dischler J M, Dachsbacher C. Real-time geometric glint anti-aliasing with normal map filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4 (1): Article No. 1. DOI: https://doi.org/10.1145/3451257.

Cook R L, Torrance K E. A reflectance model for computer graphics. ACM Trans. Graphics, 1982, 1(1): 7–24. DOI: https://doi.org/10.1145/357290.357293.

Wang B B, Deng H, Holzschuch N. Real-time glints rendering with pre-filtered discrete stochastic microfacets. Computer Graphics Forum, 2020, 39(6): 144–154. DOI: https://doi.org/10.1111/cgf.14007.

Velinov Z, Werner S, Hullin M B. Real-time rendering of wave-optical effects on scratched surfaces. Computer Graphics Forum, 2018, 37(2): 123–134. DOI: https://doi.org/10.1111/cgf.13347.

Walter B, Marschner S R, Li H S, Torrance K E. Micro-facet models for refraction through rough surfaces. In Proc. the 18th Eurographics Conference on Rendering Techniques, Jun. 2007, pp.195–206. DOI: https://doi.org/10.5555/2383847.2383874.

Heckbert P S. Fundamentals of texture mapping and image warping. Technical Report UCB/CSD-89-516, University of California, 1989.

Shen P F, Li R Z, Wang B B, Liu L G. Scratch-based reflection art via differentiable rendering. ACM Trans. Graphics, 2023, 42(4): 65. DOI: https://doi.org/10.1145/3592142.

Downloads

Published

2022-12-11

How to Cite

Dr. Nathaniel R. Beckett. (2022). A Compact Example-Driven Procedural Model for Efficient Glint Appearance Synthesis in Real-Time. Journal of Computer Science Implications, 1(1), 1–7. Retrieved from https://csimplications.com/index.php/jcsi/article/view/35