A Compact Example-Driven Procedural Model for Efficient Glint Appearance Synthesis in Real-Time
Keywords:
Glint appearance, procedural shading, real-time rendering, microfacet modelingAbstract
The realistic rendering of highly detailed and complex surface appearances, particularly those exhibiting intricate specular highlights known as glints, poses significant challenges for real-time graphics. Traditional Bidirectional Reflectance Distribution Functions (BRDFs) often fall short in capturing the fine-scale microgeometry responsible for these effects. This paper presents a novel, compact example-driven procedural model designed to generate and render glinty appearances efficiently in real-time. By leveraging a concise set of pre-computed or pre-analyzed examples, our procedural framework synthesizes plausible micro-surface details on-the-fly, enabling dynamic and visually compelling glint patterns without requiring extensive storage or complex pre-filtering. We demonstrate that this approach offers a compelling balance between visual fidelity, computational efficiency, and memory footprint, making it suitable for interactive applications and games.
References
Yan L Q, Hašan M, Marschner S, Ramamoorthi R. Position-normal distributions for efficient rendering of specular microstructure. ACM Trans. Graphics, 2016, 35 (4): Article No. 56. DOI: https://doi.org/10.1145/2897824.2925915.
Zhu J Q, Xu Y N, Wang L. A stationary SVBRDF material modeling method based on discrete microsurface. Computer Graphics Forum, 2019, 38(7): 745–754. DOI: https://doi.org/10.1111/cgf.13876.
Wang B B, Hašan M, Holzschuch N, Yan L Q. Example-based microstructure rendering with constant storage. ACM Trans. Graphics, 2020, 39 (5): Article No. 162. DOI: https://doi.org/10.1145/3406836.
Tan H W, Zhu J Q, Xu Y N, Meng X X, Wang L, Yan L Q. Real-time microstructure rendering with MIP-mapped normal map samples. Computer Graphics Forum, 2022, 41(1): 495–506. DOI: https://doi.org/10.1111/cgf.14448.
Yan L Q, Hašan M, Jakob W, Lawrence J, Marschner S, Ramamoorthi R. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graphics, 2014, 33(4): 116. DOI: https://doi.org/10.1145/2601097.2601155.
Chermain X, Claux F, Mérillou S. Glint rendering based on a multiple-scattering patch BRDF. Computer Graphics Forum, 2019, 38(4): 27–37. DOI: https://doi.org/10.1111/cgf.13767.
Yan L Q, Hašan M, Walter B, Marschner S, Ramamoorthi R. Rendering specular microgeometry with wave optics. ACM Trans. Graphics, 2018, 37(4): 75. DOI: https://doi.org/10.1145/3197517.3201351.
Guo J, Chen Y J, Guo Y W, Pan J G. A physically-based appearance model for special effect pigments. Computer Graphics Forum, 2018, 37(4): 67–76. DOI: https://doi.org/10.1111/cgf.13476.
Xia M Q, Walter B, Hery C, Maury O, Michielssen E, Marschner S. A practical wave optics reflection model for hair and fur. ACM Trans. Graphics, 2023, 42 (4): Article No. 39. DOI: https://doi.org/10.1145/3592446.
Yu Y C, Xia M Q, Walter B, Michielssen E, Marschner S. A full-wave reference simulator for computing surface reflectance. ACM Trans. Graphics, 2023, 42(4): 109. DOI: https://doi.org/10.1145/3592414.
Zhu J Q, Zhao S Z, Xu Y N, Meng X X, Wang L, Yan L Q. Recent advances in glinty appearance rendering. Computational Visual Media, 2022, 8(4): 535–552. DOI: https://doi.org/10.1007/s41095-022-0280-x.
Gamboa L E, Guertin J P, Nowrouzezahrai D. Scalable appearance filtering for complex lighting effects. ACM Trans. Graphics, 2018, 37 (6): Article No. 277. DOI: https://doi.org/10.1145/3272127.3275058.
Atanasov A, Wilkie A, Koylazov V, Křivánek J. A multi-scale microfacet model based on inverse bin mapping. Computer Graphics Forum, 2021, 40(2): 103–113. DOI: https://doi.org/10.1111/cgf.142618.
Fan J H, Wang B B, Wu W S, Hašan M, Yang J, Yan L Q. Efficient specular glints rendering with differentiable regularization. IEEE Trans. Visualization and Computer Graphics, 2023, 29(6): 2940–2949. DOI: https://doi.org/10.1109/TVCG.2022.3144479.
Jakob W, Hašan M, Yan L Q, Lawrence J, Ramamoorthi R, Marschner S. Discrete stochastic microfacet models. ACM Trans. Graphics, 2014, 33 (4): Article No. 115. DOI: https://doi.org/10.1145/2601097.2601186.
Atanasov A, Koylazov V. A practical stochastic algorithm for rendering mirror-like flakes. In Proc. the 2016 ACM SIGGRAPH Talks, Jul. 2016, Article No. 67. DOI: https://doi.org/10.1145/2897839.2927391.
Wang B B, Wang L, Holzschuch N. Fast global illumination with discrete stochastic microfacets using a filterable model. Computer Graphics Forum, 2018, 37(7): 55–64. DOI: https://doi.org/10.1111/cgf.13547.
Raymond B, Guennebaud G, Barla P. Multi-scale rendering of scratched materials using a structured SV-BRDF model. ACM Trans. Graphics, 2016, 35 (4): Article No. 57. DOI: https://doi.org/10.1145/2897824.2925945.
Werner S, Velinov Z, Jakob W, Hullin M B. Scratch iridescence: Wave-optical rendering of diffractive surface structure. ACM Trans. Graphics, 2017, 36 (6): Article No. 207. DOI: https://doi.org/10.1145/3130800.3130840.
Deng H, Liu Y, Wang B B, Yang J, Ma L, Holzschuch N, Yan L Q. Constant-cost spatio-angular prefiltering of glinty appearance using tensor decomposition. ACM Trans. Graphics, 2022, 41 (2): Article No. 22. DOI: https://doi.org/10.1145/3507915.
Kuznetsov A, Hašan M, Xu Z X, Yan L Q, Walter B, Kalantari N K, Marschner S, Ramamoorthi R. Learning generative models for rendering specular microgeometry. ACM Trans. Graphics, 2019, 38 (6): Article No. 225. DOI: https://doi.org/10.1145/3355089.3356525.
Guo Y, Hašan M, Yan L, Zhao S. A Bayesian inference framework for procedural material parameter estimation. Computer Graphics Forum, 2020, 39(7): 255–266. DOI: https://doi.org/10.1111/cgf.14142.
Zirr T, Kaplanyan A S. Real-time rendering of procedural multiscale materials. In Proc. the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, Feb. 2016, pp.139–148. DOI: https://doi.org/10.1145/2856400.2856409.
Deliot T, Belcour L. Real-time rendering of glinty appearances using distributed binomial laws on anisotropic grids. Computer Graphics Forum, 2023, 42(8): e14866. DOI: https://doi.org/10.1111/cgf.14866.
Chermain X, Sauvage B, Dischler J M, Dachsbacher C. Procedural physically based BRDF for real-time rendering of glints. Computer Graphics Forum, 2020, 39(7): 243–253. DOI: https://doi.org/10.1111/cgf.14141.
Chermain X, Lucas S, Sauvage B, Dischler J M, Dachsbacher C. Real-time geometric glint anti-aliasing with normal map filtering. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4 (1): Article No. 1. DOI: https://doi.org/10.1145/3451257.
Cook R L, Torrance K E. A reflectance model for computer graphics. ACM Trans. Graphics, 1982, 1(1): 7–24. DOI: https://doi.org/10.1145/357290.357293.
Wang B B, Deng H, Holzschuch N. Real-time glints rendering with pre-filtered discrete stochastic microfacets. Computer Graphics Forum, 2020, 39(6): 144–154. DOI: https://doi.org/10.1111/cgf.14007.
Velinov Z, Werner S, Hullin M B. Real-time rendering of wave-optical effects on scratched surfaces. Computer Graphics Forum, 2018, 37(2): 123–134. DOI: https://doi.org/10.1111/cgf.13347.
Walter B, Marschner S R, Li H S, Torrance K E. Micro-facet models for refraction through rough surfaces. In Proc. the 18th Eurographics Conference on Rendering Techniques, Jun. 2007, pp.195–206. DOI: https://doi.org/10.5555/2383847.2383874.
Heckbert P S. Fundamentals of texture mapping and image warping. Technical Report UCB/CSD-89-516, University of California, 1989.
Shen P F, Li R Z, Wang B B, Liu L G. Scratch-based reflection art via differentiable rendering. ACM Trans. Graphics, 2023, 42(4): 65. DOI: https://doi.org/10.1145/3592142.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Dr. Nathaniel R. Beckett

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright of their published work. By submitting to an ERDAST journal and upon acceptance of the article, the author(s) agree to grant the journal a non-exclusive license to publish, reproduce, distribute, and archive the article. All articles are published under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Under this license: Others may copy, distribute, display, remix, adapt, and build upon the work, even commercially, As long as proper credit is given to the original author(s) and source, A link to the license is provided, an, Any changes are clearly indicated.
???? License link: https://creativecommons.org/licenses/by/4.0/