Characterizing Core-Periphery Structures in Networks via Principal Component Analysis of Neighborhood-Based Bridge Node Centrality
Keywords:
core-periphery structure, complex networks, bridge node centrality, principal component analysis (PCA)Abstract
Complex networks are ubiquitous, modeling interactions in diverse systems from social dynamics to biological processes. A fundamental organizational principle within these networks is the core-periphery structure, where a densely connected core facilitates efficient communication, surrounded by a more loosely connected periphery. Existing methods for detecting this structure often rely on density matrices, spectral properties, or random walks. This article proposes a novel approach that leverages Principal Component Analysis (PCA) applied to the Neighborhood-based Bridge Node Centrality (NBNC) tuple. The NBNC tuple captures a node's local structural importance and its bridging capabilities within the network. By applying PCA, we aim to reduce the dimensionality of these centrality tuples, allowing the most significant structural features related to core-periphery distinction to emerge. This method offers a refined understanding of nodal roles, particularly highlighting the nuanced position of "bridge nodes" at the interface of core and periphery. Through this analytical framework, we demonstrate an effective means to characterize and identify core-periphery components across various real-world networks, providing insights into their robustness, information flow, and overall organization.
References
Barbera, P., Wang, N., Bonneau, R., Jost, J. T., Nagler, J., Tucker, J., Gonzalez Bailon, S. (2015). The Critical Periphery in the Growth of Social Protests. PLoS ONE , 0143611, 1 15. https://doi.org/10.1371/journal.pone.0143611
Batagelj, V., Mrvar, A. (2006). Pajek Datasets . Retrieved from http://vlado.fmf.uni-lj.si/pub/networks/data/
Borgatti, S. P., Everett, M. G. (2000). Models of Core/Periphery Structures. Social Networks , 21 (4), 375 395. https://doi.org/10.1016/S0378-8733(99)00019-2
Cadrillo, A., Gomez Gardenes, J., Zanin, M., Romance, M., Papo, D., Pozo, F., Boccaletti, S. (2013). Emergence of Network Features from Multiplexity. Scientific Reports , 3 (1344), 1 6. https://doi.org/10.1038/srep01344
Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to Algorithms (4th ed.) MIT Press.
Cucuringu, M., Rombach, P., Lee, S. H., Porter, M. A. (2016). Detection of Core Periphery Structure in Networks using Spectral Methods and Geodesic Paths. European Journal of Applied Mathematics , 27 , 846 887, 2016. https://doi.org/10.1017/S095679251600022X
De Domenico, M., Sole Ribalta, A., Gomez, S., Areans, A. (2014). Navigability of Interconnected Networks under Random Failures. Proceedings of the National Academy of Sciences , 111 , 8351 8356. https://doi.org/10.1073/pnas.1318469111
Della Rossa, F., Dercole, F., Piccardi, C. (2013). Profiling Core Periphery Network Structure by Random Walkers. Scientific Reports , 3 (1467), 1 8. https://doi.org/10.1038/srep01467
Gallagher, R. J., Young, J. G., Welles, B. F. (2021). A Clarified Typology of Core Periphery Structure in Networks. Science Advances , 7 (12), eabc9800, 1 11. https://doi.org/10.1126/sciadv.abc9800
Geiser, P., & Danon, L. (2003). Community Structure in Jazz. Advances in Complex Systems , 6 ( 563 573. https://doi.org/10.1142/S0219525903001067
Gephi, (2011). Retrieved from https://gephi.org/tutorials/gephi_tutorial_layouts.pdf
Hashler, M., Peienbrock, M., Doran, D. (2019). dbscan: Fast Density based Clustering with R. Journal of Statistical Software , 91 (1), 1 30. https://doi.org/10.18637/jss.v091.i01
Inza, E. P., Vakhania, N., Sigatreta, J. M., Mira, F. A. H. (2023). Exact and Heuristic Algorithms for the Domination Problem. European Journal of Operational Research , 313 (2), 1 30. https:[https://doi.org/10.1016/j.ejor.2023.08.033](https://doi.org/10.1016/j.ejor.2023.08.033)
Jolliffe, I. T. (2002). Principal Component Analysis (1st Ed.), Springer Series in Statistics.
Kitsak, M., Gallos, L. K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H. E., Makse, H. A. (2010). Identification of Influential Spreaders in Complex Networks. Nature Physics , 6 (11), 888 893. https://doi.org/10.1038/nphys1746
Knuth, D. E. (1993). The Stanford GraphBase A Platform for Combinatorial Computing (1st Addison Wesley.
Kojaku, S., Masuda, N. (2017). Finding Multiple Core Periphery Pairs in Networks. Physical Review E , 96 , 052313. https://doi.org/10.1103/PhysRevE.96.052313
Lloyd, S. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information Theory , 28 (2), 129 137. https://doi.org/10.1109/TIT.1982.1056489
Ma, C., Xiang, B. B., Chen, M. S., Small, M., Zhang, H. F. (2018). Detection of Core Periphery Structure in Networks based on 3 Tuple Motifs. Chaos , 28 , 053121. https://doi.org/10.1063/1.5023719
Magnani, M., Micenkova, B., Rossi, L. (2013). Combinatorial Analysis of Multiple Networks. arXiv:1303.4986 [cs.SI].
Maia de Abreu, N. M. (2007). Old and New Results on Algebraic Connectivity of Graphs. Linear Algebra and its Applications , 423 (1), 53 73. https://doi.org/10.1016/j.laa.2006.08.017
Meghanathan, N. (2012). Neighborhood based Bridge Node Centrality Tuple for Complex Network Analysis. Applied Network Science , 6 (47), 1 36. https://doi.org/10.1007/s41109-021-00388-1
Meghanathan, N. (2014). Spectral Radius as a Measure of Variation in Node Degree for Complex Network Graphs . Paper presented at the 3rd International Conference on Digital Contents and Applications, Hainan, China. https://doi.org/10.1109/UNESST.2014.8
Meghanathan, N. (2016). Assortativity Analysis of Real World Network Graphs based on Centrality Metrics. Computer and Information Science , 9 (3), 7 25. https://doi.org/10.5539/cis.v9n3p7
Meghanathan, N. (2017). Randomness Index for Complex Network Analysis. Social Network Analysis and Mining , 7 (25), 1 15. https://doi.org/10.1007/s13278-017-0444-3
Meghanathan, N. (2024). Assortativity Analysis of Complex Real World Networks using the Principal Components of the Centrality Metrics. International Journal of Data Science , 9 (1), 79 97. https://doi.org/10.1504/IJDS.2024.1359455
Newman, M. (2006). Finding Community Structure in Networks using the Eigenvectors of Matrices. Physical Review E , 74 (3), 036104. https://doi.org/10.1103/PhysRevE.74.036104
Newman, M. (2010). Networks: An Introduction. (1st Ed.) Oxford University Press.
Puck Rombach, M., Porter, M. A., Fowler, J. H., & Mucha, P. J. (2014). Core-Periphery Structure in Networks. SIAM Journal on Applied Mathematics , 74 (1), 167 190. https://doi.org/10.1137/120881683
Strang, G. (2023). Linear Algebra and its Applications. (6th Ed.) Wellesley-Cambridge Press.
Subelj L., & Bajec, M. (2011). Robust Network Community Detection using Balanced Propagation. The European Physical Journal B , 81 (3), 353 362. https://doi.org/10.1140/epjb/e2011-10979-2
Yanchenko, E., & Sengupta, S. (2023). Core-Periphery Structure in Networks: A Statistical Exposition. Statistics Surveys , 17 , 42 74. https://doi.org/10.1214/23-SS141
Zachary, W. W. (1977). An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research , 33 (4), 452 473. https://doi.org/10.1086/jar.33.4.3629752
Zhang, X., Martin, T., & Newman, M. (2015). Identification of Core-Periphery Structure in Networks. Physical Review E , 91 (3), 032803. https://doi.org/10.1103/PhysRevE.91.032803
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Dr. Abdulrahman O. Nassar, Dr. Cheng-Hao Lin

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain full copyright of their published work. By submitting to an ERDAST journal and upon acceptance of the article, the author(s) agree to grant the journal a non-exclusive license to publish, reproduce, distribute, and archive the article. All articles are published under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Under this license: Others may copy, distribute, display, remix, adapt, and build upon the work, even commercially, As long as proper credit is given to the original author(s) and source, A link to the license is provided, an, Any changes are clearly indicated.
???? License link: https://creativecommons.org/licenses/by/4.0/