Real-Time Digital Twin for Stewart Platform Control and Trajectory Synthesis

Authors

  • Dr. Julian Blackwood Lab for Intelligent Control and Digital Systems Institute of Advanced Studies in Computer Science, Edinburgh, UK
  • Professor Elara Croft Department of Robotics and Intelligent Systems National Institute of Advanced Technologies, Seoul, South Korea

Keywords:

Digital Twin, Stewart Platform, Real-Time Control, 6-DOF

Abstract

This article presents the design, implementation, and validation of a real-time digital twin for a Stewart platform, integrated with advanced trajectory computation capabilities. Stewart platforms, known for their high precision and multi-degree-of-freedom motion, are widely used in applications such as flight simulators, medical devices, and manufacturing systems. The integration of a digital twin allows for real-time monitoring, predictive analysis, and enhanced control, thereby improving the system's operational efficiency and resilience. This work details the architectural framework of the digital twin, the methods for real-time data synchronization, the algorithms for dynamic trajectory generation, and the validation of the virtual model against the physical Stewart platform. The proposed system demonstrates significant potential for improving the control, diagnostics, and overall performance of complex robotic manipulators through a comprehensive virtual representation.

References

Bhattacharjya, A., Zhong, X., Wang, J., & Li, X. (2020). CoAP—application layer connection-less lightweight protocol for the internet of things (IoT) and CoAP-IPSEC security with DTLS supporting CoAP. Digital Twin Technologies and Smart Cities. Internet of Things, 151-175.

Bingul, Z., & Karahan, O. (2012). Dynamic modeling and simulation of Stewart platform. Intech Open.

Camacho, F. D., Medrano, A. Q., & Carvajal, L. E. (2020). Validation through a digital twin of a Stewart platform with irregular geometry with 6 DOF for simulation of a transport vehicle.

Dasgupta, B., & Mruthyunjaya, T. (2000). The Stewart platform manipulator: a review. Mechanism and Machine Theory, 35(1), 15-40.

Eftekhari, M., & Karimpour, H. (2018). Emulation of pilot control behavior across a Stewart platform simulator. Robotica, 36(4), 588-606.

Eirinakis, P., Lounis, S., Plitsos, S., Arampatzis, G., Kalaboukas, K., Kenda, K., Lu, J., Rožanec, J. M., & Stojanovic, N. (2022). Cognitive digital twins for resilience in production: a conceptual framework. Information, 13(1), 33.

Eunike, A., Wang, K.-J., Chiu, J., & Hsu, Y. (2022). Real-time resilient scheduling by digital twin technology in a flow-shop manufacturing system. Procedia CIRP, 107, 668-674.

Girletti, L., Groshev, M., Guimarães, C., Bernardos, C. J., & de la Oliva, A. (2020). An intelligent edge-based digital twin for robotics.

Human, C., Basson, A. H., & Kruger, K. (2021). Digital twin data pipeline using MQTT in sladta.

Khan, M. T. (2022). Challenges in modelling applications for safe and resilient digital twins.

Leng, J., Zhu, X., Huang, Z., Xu, K., Liu, Z., Liu, Q., & Chen, X. (2023). ManuChain II: blockchained smart contract system as the digital twin of decentralized autonomous manufacturing toward resilience in industry 5.0. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 53(8), 4715-4728.

Van Der Aalst, W. M. P., Hinz, O., & Weinhardt, C. (2021). Resilient digital twins: organizations need to prepare for the unexpected. In Business & Information Systems Engineering (Vol. 63, pp. 615-619). Sacramento, CA: Velasco.

Papacharalampopoulos, A., Michail, C. K., & Stavropoulos, P. (2021). Manufacturing resilience and agility through processes digital twin: design and testing applied in the LPBF case. Procedia CIRP, 103(3), 164-169.

Singh, M., Fuenmayor, E., Hinchy, E., Qiao, Y., Murray, N., & Devine, D. (2021). Digital twin: origin to future. Applied System Innovation, 4(2), 36.

Mirelez-Delgado, F. D., Díaz-Paredes, D. P., & Gallardo-Carreó, M. A. (2020). Stewart-gough platform: design and construction with a digital PID controller implementation. In Automation and Control. London, UK: IntechOpen.

Su, Y. X., & Duan, B. Y. (2000). The application of the Stewart platform in large spherical radio telescopes. Journal of Robotic Systems, 17(7), 375-383.

Tang, J., Emmanouilidis, C., & Salonitis, K. (2020). Reconfigurable manufacturing systems characteristics in digital twin context. IFAC-PapersOnLine, 53(2), 10585-10590.

Diesner-Mayer, T., & Seidel, N. (2022). Supporting gender-neutral writing in German. In Proceedings of the Mensch Und Computer 2022. ACM, New York, NY.

Tao, F., Xiao, B., Qi, Q., Cheng, J., & Ji, P. (2022). Digital twin modeling. Journal of Manufacturing Systems, 64(4), 372-389.

Velasco, J., Calvo, I., Barambones, O., Venegas, P., & Napole, C. (2020). Experimental validation of a sliding mode control for a Stewart platform used in aerospace inspection applications. Mathematics, 8(11), 2051.

Virgil Petrescu, R. V., Aversa, R., Apicella, A., Kozaitis, S., Abu-Lebdeh, T., & Petrescu, F. I. T. (2018). Inverse kinematics of a Stewart platform. Journal of Mechatronics and Robotics, 2(1), 45-59.

Vrabič, R., Erkoyuncu, J. A., Farsi, M., & Ariansyah, D. (2021). An intelligent agent-based architecture for resilient digital twins in manufacturing. CIRP Annals, 70(1), 349-352.

Walica, D., & Noskievič, P. (2024). Multibody simulation model as part of digital twin architecture: Stewart platform example. IEEE Access, 12, 3700-3717.

Walica, D., & Noskievič, P. (2022). Application of the MiL and HiL simulation techniques in Stewart platform control development. Applied Sciences, 12(5), 2323.

Wang, Q.-G., Lee, T.-H., Fung, H.-W., Bi, Q., & Zhang, Y. (1999). PID tuning for improved performance. IEEE Transactions on Control Systems Technology, 7(4), 457-465.

Wapler, M., Urban, V., Weisener, T., Stallkamp, J., Dürr, M., & Hiller, A. (2003). A Stewart platform for precision surgery. Transactions of the Institute of Measurement and Control, 25(4), 329-334.

Zhang, D., Xie, M., Yan, H., & Liu, Q. (2021). Resilience dynamics modeling and control for a reconfigurable electronic assembly line under spatio-temporal disruptions. Journal of Manufacturing Systems, 60, 852-863.

Song, J., Liu, S., Ma, T., Sun, Y., Tao, F., & Bao, J. (2023). Resilient digital twin modeling: a transferable approach. Advanced Engineering Informatics, 58(08), 102148.

Vieira, J., Poças Martins, J., Marques de Almeida, N., Patrício, H., & Gomes Morgado, J. (2022). Towards resilient and sustainable rail and road networks: a systematic literature review on digital twins. Sustainability, 14(12), 7060.

Downloads

Published

2025-02-24

How to Cite

Dr. Julian Blackwood, & Professor Elara Croft. (2025). Real-Time Digital Twin for Stewart Platform Control and Trajectory Synthesis. Journal of Computer Science Implications, 4(1), 7–13. Retrieved from https://csimplications.com/index.php/jcsi/article/view/62